Dit onderzoek werd verricht in opdracht en ten laste van het Directoraat-Generaal Milieubeheer in het kader van project 609021 (voorheen 741201), ad hoc stoffen, volgens onderzoeksplannummer 741201-93/05/00.

This investigation has been performed in order and for the account of the Directorate-General for Environmental Protection within the framework of project 609021 (formerly 741201), research plan 741201-93/05/00.

Rijksinstituut voor Volksgezondheid en Milieu, Postbus 1, 3720 BA Bilthoven,
tel. 030-2749111, fax 030-2742971
VERZENDLIJST

1 ir. P.J. Verkerk, Hoofdinspecteur van de Volksgezondheid voor de Milieuhygiëne
2-5 dr.ir. Dewaide, Regionaal Inspecteur van de Volksgezondheid voor de Milieuhygiëne, ambtsgebied Noord-Brabant en Limburg
6 dr.ir. B.C.J. Zoetenman, plv Directeur-Generaal Milieubeheer
7 dr. C.J.M. van den Bogaard, HIMH/S&C
8 drs. M.A.W.M. Hamans, Regionaal Inspecteur van de Veterinaire Inspectie van de Volksgezondheid, ambtsgebied Noord-Brabant en Limburg.
10 Directie RIVM
11 dr. H.A. van 't Klooster
12 dr. ir. G. de Mik
13 dr. H.J.P Eijsackers
14 ir. R. van den Berg
15 drs. L.H.M. Kohsieck
16 dr. W.H. Königemann
17 dr. J. Meulenberg
18 ir. J.J.G. Kliest
19 dr. P. van Zoonen
20 drs. A.K.D. Liem
21-24 Auteurs
25 Hoofd afdeling Voorlichting & Public Relations, J.A.M. Lijdsman-Schijvenaars
26 Bureau Rapportenregistratie, H. Kole
27 Bibliotheek RIVM
28 Depot Nederlandse Publikaties en Nederlandse Bibliografie
29-45 Reserve exemplaren t.b.v. Bureau Rapportenbeheer
INHOUDSOPGAVE

VERZENDLIJST 2

ABSTRACT 5

SAMENVATTING 6

1 INLEIDING 7

2 MATERIALEN EN METHODEN 9
2.1 Monsternamestrategie 9
2.2 Monstervoorbewerking 10
2.3 Isolatie en zuivering 11
2.4 Analyse 12

3 RESULTATEN EN DISCUSSIE 13
3.1 Gehalten 13
3.2 Kwaliteitskenmerken 13
3.3 Congeneerpatronen 18

4 CONCLUSIES 23

REFERENTIES 24

BIJLAGE Gebruikte Toxiciteits Equivalentie Factoren 26

FIGUREN
1 Monsterlocaties 10
2 Niveau van enkele PCB-congeneren in de tijd 17
3 PCB-gehalten in 1991 en 1993 19
4 Chromatogrammen van a) een Ugilec 141 standaard en b) een palingmonsterextract 20
5 Chromatogrammen van a) een Ugilec 141 - en b) p,p'-DDE standaard 21
<table>
<thead>
<tr>
<th></th>
<th>TABELLEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>De gemiddelde lengte in cm en de gemiddelde hoeveelheid filet in gram op</td>
</tr>
<tr>
<td></td>
<td>de verschillende locaties</td>
</tr>
<tr>
<td>2</td>
<td>Vetgehalte van de drie poolmonster in procenten van het eetbare deel</td>
</tr>
<tr>
<td>3</td>
<td>Overzicht van de gehalten van drie gepoolde palingmonsters, gevangen in</td>
</tr>
<tr>
<td></td>
<td>de Roer</td>
</tr>
<tr>
<td>4</td>
<td>Gehalten van PCDD/F's, PCB's en Ugilec 141 in 2,3,7,8-TCDD-</td>
</tr>
<tr>
<td></td>
<td>equivalenten (I-TEQ) in Nederlandse paling, uitgedrukt per gram vet</td>
</tr>
<tr>
<td>5</td>
<td>PCB-gehalten in paling uit de Roer bij Vlodrop in mg/kg filet</td>
</tr>
<tr>
<td>6</td>
<td>Ugilec 141 in paling (μg/kg op productbasis) in Nederlandse rivieren</td>
</tr>
<tr>
<td></td>
<td>van 1984 tot 1992</td>
</tr>
<tr>
<td>7</td>
<td>Relatieve bijdragen in procenten van PCDD/F's, PCB's en Ugilec 141</td>
</tr>
<tr>
<td></td>
<td>aan het totale gehalte in 2,3,7,8-TCDD-equivalenten op productbasis</td>
</tr>
</tbody>
</table>
ABSTRACT

Questions about the health risk of anglers caused by consumption of eel from the river Rur, were the reason for an investigation about the occurrence of PCBs, dioxins and Ugilec 141 in this eel. Methods developed at the Laboratory of Organic-analytical Chemistry (LOC) have been used for the analysis of Ugilec 141, planar, mono-ortho and indicator PCBs and dioxins. Preliminary treatment of the samples was combined for the different kind of analytes. The different kind of analytes were found varying from pg/g fat till μg/g fat. Planar PCBs were found at a level of 0.2-0.8 ng/g of fat. Dioxins were found at a level of 0.1-12 pg/g of fat. Mono-ortho, indicator PCBs and Ugilec 141 were found at a level of 0.1-1.2 μg/g of fat. The total amount of the different components, expressed in 2,3,7,8-TCDD equivalents, is mainly determined by the contribution of the planar and mono-ortho PCBs. PCB 126 gives the greatest contribution to the total toxicity, due to the high TEQ value of 0.1, in combination with the concentration level. Ugilec 141 and the dioxins contribute of 4% each in the total toxicity. A decreasing trend in the levels was found for all components in eel from the river Rur, determined in this investigation. Levels in eel from the Rur were higher than the levels found in other Dutch surface waters.
SAMENVATTING

Naar aanleiding van vragen omtrent het gezondheidsrisico bij sportvissers in het geval van consumptie van eigen gevangen paling uit de Roer is in 1993 een onderzoek uitgevoerd naar het voorkomen van PCB’s, dioxinen en Ugilec 141 in paling afkomstig uit de Roer. Gebruik makend van de eerder door het Laboratorium voor Organisch-analytische Chemie (LOC) van het RIVM ontwikkelde analysemethoden voor Ugilec 141, planaire-, mono-ortho- en indicator PCB’s en PCDD/F’s, is de voorberekening voor de verschillende stofgroepen gecombineerd uitgevoerd. De verschillende componentengroepen komen voor op niveaus variërend van pg/g vet tot µg/g vet. Planaire PCB’s komen voor op een niveau van 0.2-0.8 ng/g vet en PCDD/F’s op een niveau van 0.1-12 pg/g vet. Mono-ortho PCB’s, indicator PCB’s en Ugilec 141 zijn aangetoond op een niveau van 0.1-1.2 µg/g vet.

De som van de gehalten van de onderzochte componentgroepen, uitgedrukt in 2,3,7,8-TCDD equivalenten (TEQ), wordt hoofdzakelijk bepaald door de bijdrage van de planaire PCB’s en de som van de twee onderzochte mono-ortho PCB’s, namelijk ruim 90%. Door het toekennen van een relatief hoge toxiciteitsequivalentiefactor van 0.1, in combinatie met het hoge gehalte, levert PCB 126 de grootste bijdrage aan de totale toxiciteit. Ugilec 141 en de PCDD/F’s dragen elk aan het totaal gehalte uitgedrukt in TEQ voor ongeveer 4 procent bij.

Voor de onderzochte stofgroepen geldt dat de gehalten in paling afkomstig uit de Roer een dalende trend te zien geven in de tijd. Tegelijkertijd kan worden vastgesteld dat de aangetoonde niveaus in paling afkomstig uit de Roer boven de niveaus liggen van die in overige Nederlandse oppervlaktewateren.
1 INLEIDING

Op verzoek van de GGD Midden Limburg in Roermond en in opdracht van de Regionale Inspecteur van de Volksgezondheid voor de Milieuhygiëne Limburg zijn in 1993 metingen uitgevoerd naar het voorkomen van Ugilec 141, polychloorbiphenyleen (PCB’s) en polychloor dibenzo-p-dioxinen en -furanen (PCDD/F’s) in een aantal monsters paling afkomstig uit de Roer.

Bronnen en voorkomen contaminanten

Sinds het begin van de jaren ’80 is de productie en het gebruik van PCB’s in diverse Europese landen teruggebracht om milieu- en volksgezondheidsrisico’s te beperken. Ter vervanging van PCB’s wordt gezocht naar stoffen met vergelijkbare fysisch-chemische eigenschappen, zoals gechloreerde benzyltoluuen, dibrombenzyltoluuen (DBBT’s) en dibutyltinbora (DBT). Dichloorbenzyl dichloortoluuen (DBDT’s), verkrijgbaar onder meer als Ugilec 141, zijn in West-Duitsland op grote schaal in gesloten hydraulische vloeistof systemen in de ondergrondse mijnbouw toegepast [1-3]. Door bijvoorbeeld lekkages is het risico aanwezig dat DBDT’s in het milieu terecht komen en zodanig de voedselketen kunnen verontreinigen via percolatiewater, mijn-outputs en ventilatie-systemen [1-2]. In Nederland is het verboden om dichloorbenzyl dichloortoluuen te vervaardigen, in te voeren, ter beschikking te stellen of toe te passen volgens de Wet Milieugevaarlijke Stoffen (WMS) [4].

Door lekverliezen en uitstroom van PCB’s en PCB-vervangers, waaronder Ugilec 141, kunnen rivieren verontreinigd worden met deze stoffen. De Roer vindt haar oorsprong in het Duitse Ruhrgebied, waar veel bruinkoolwinning plaatsvindt. In 1989 werd in het sediment van de Roer een Ugilec 141 concentratie gevonden van 328 µg/kg d.s. [5].

De verspreiding van dioxines naar het milieu is over het algemeen meer diffuus, de voornaamste bronnen hierbij zijn verbranding van stedelijk afval (in AVI’s en bij bedrijven), verbranding van chemisch afval, gebruik van bestrijdingsmiddelen (waaronder houtverduurzamingsmiddelen), industriële processen (metaal industrie), branden van houtkachels ed, verkeer, enz. [6].

Verspreiding vindt plaats naar bodem, water en lucht; en dioxinen worden derhalve in alle milieукompartimenten aangetroond. De aanwezigheid van dioxinen in het sediment wordt voor een belangrijk deel veroorzaakt door depositie vanuit de lucht en de grensoverschrijdende vracht in de vorm van zwevend slib via de grote rivieren. In het Nederlandse gedeelte van de Rijn liepen in sediment monsters uit de periode 1984-85 de gehalten uiteen van 12 tot 220 ng/l-TEQ/kg d.s. [6].

Onderzoek GGD Limburg

Het onderzoek van de GGD werd uitgevoerd naar aanleiding van een aantal vragen van sportvissers omtrent het gezondheidsrisico van de consumptie van paling uit de Roer. Dit onderzoek had een tweeledig doel. Het eerste doel was het bepalen van de mogelijke
gezondheidsrisico’s van de consumptie van palingen uit de Roer. Hiertoe werd het consumptiegedrag van Limburgse sportvissers onderzocht en zijn palingen van drie locaties op de Roer onderzocht. Het tweede doel was het aangeven van de toxiciteit van het mengsel van Ugilec 141 [7]. Onderzoek heeft aangetoond, dat de gehalten in paling indicatief kunnen zijn voor het voorkomen van persistente organische verbindingen, zoals PCB’s, dioxinen en Ugilec 141, omdat in de paling door zijn levenswijze (bodemdier, aaseter en plaatsgebonden) en zijn relatief hoge vetgehalte, accumulatie van deze verbindingen plaatsvindt [20].

Doelstelling
Naast de risicobeoordeling die is uitgevoerd door de GGD is het doel van dit onderzoek het bepalen, middels de bij LOC ontwikkelde methoden, van de gehalten van de verschillende stofgroepen in paling. Tevens worden de relatieve bijdragen van de verschillende stofgroepen aan de totale toxiciteit vastgesteld. Verder worden de gehalten vergeleken met eerder onderzoek om eventuele trends in de tijd te kunnen vaststellen.

In dit rapport wordt onderzoek gedaan naar het voorkomen van PCB’s, dioxinen en Ugilec 141 in Nederlandse paling afkomstig uit de rivier de Roer. In Hoofdstuk 2 worden de gevolgde analysemethoden beschreven. Een analysemethode voor Ugilec 141 werd door het Laboratorium voor Organisch-analytische Chemie (LOC) van het RIVM ontwikkeld in het kader van handhaving m.b.t. Ugilec 141 in afvalolie [8]. Methoden voor planaire en indicator PCB’s en PCDD/F’s zijn reeds in een eerder stadium door het LOC ontwikkeld [9-10]. In het kader van dit onderzoek zal de voorbereiding voor de verschillende stofgroepen gekombineerd uitgevoerd worden. De resultaten van het onderzoek worden in Hoofdstuk 3 weergegeven. Ondanks dit beperkte onderzoek, zullen de gevonden gehalten worden vergeleken met andere meetgegevens over het voorkomen van de verschillende componenten in de Nederlandse rivieren.
2 MATERIALENENMETHODEN

2.1 Monsternamestrategie

De Roer vindt haar oorsprong in het Duitse Ruhrgebied waar veel bruinkoolwinning plaatsvindt. Door lekverliezen en uitstroom van PCB’s en PCB-vervangers, zoals Ugilec 141, is er een verhoogd gehalte aan deze componenten mogelijk. Vanwege het feit dat sportvissers in de Roer actief zijn, is voor een risico-evaluatie voor de consumptie van eigen gevangen paling gekozen voor de Roer.

De drie gekozen monsterlocaties bestrijken het gehele stroomgebied van de Roer in Nederland. Van Vlodrop waar de Roer Nederland binnenkomt tot Roermond waar de Roer overgaat in de Maas. In figuur 1 is een plattegrond te zien van de omgeving van de drie gekozen bemonsteringslocaties.

De palingen zijn gevangen door een sportvisser met een vergunning voor electrovisserij in opdracht van de GGD Midden Limburg op 20 april 1993. Er zijn alleen palingen gevangen met een lengte groter dan 28 cm omdat dit bij de Visserijwet als minimum-maat (bovenmaatse paling) is vastgelegd. Palingen kleiner dan 28 cm mogen niet voor consumptie gevangen worden. Om een representatief monster per locatie te verkrijgen zijn er per locatie minimaal 25 palingen gevangen.

In tabel 1 worden de gemiddelde lengte en de hoeveelheid filet weergegeven.

<table>
<thead>
<tr>
<th>bemonsteringsplaats</th>
<th>locatie 1</th>
<th>locatie 2</th>
<th>locatie 3</th>
<th>gemiddelde 3 locaties</th>
</tr>
</thead>
<tbody>
<tr>
<td>monstercode RIVM</td>
<td>930672</td>
<td>930673</td>
<td>930674</td>
<td></td>
</tr>
<tr>
<td>gem. lengte (cm)</td>
<td>33.4</td>
<td>41.3</td>
<td>39.6</td>
<td>38.1</td>
</tr>
<tr>
<td>gem. hoeveelheid filet (g)</td>
<td>28.6</td>
<td>49.8</td>
<td>39.0</td>
<td>39.1</td>
</tr>
</tbody>
</table>
Figuur 1: Monsterlocaties.

2.2 Monstervoorbewerking

Homogenisering
De palingen zijn gesfileerd (verwijdering van kop, staart, ingewanden, graat en vel) zodat het zogenaamde eetbare deel overblijft. Per locatie is één poolmonster bereid door de eetbare delen bij elkaar te voegen. Deze drie poolmonsters zijn gehomogeniseerd met behulp van een keukenmachine.
Vetextractie
Per poolmonster is van het gehomogeniseerde materiaal, in duplo, ongeveer 100 gram genomen. Voor de analyse van de PCDD/F's en planaire PCB's is aan één van de twee deelmonsters een \(^{13}\)C\(_{12}\) gelabelde PCDD/F en planaire PCB standaard toegevoegd. Hierna zijn de beide poolmonsters gevriesdroogd. Na vriesdrogen is het vet geëxtraheerd met behulp van een reflux opstelling (continu soxhlet) met hexaan. Na droogdampen van de hexaanfase is het vetgehalte bepaald, deze vetgehalten zijn weergegeven in tabel 2.

Tabel 2: Vetgehalte van de drie poolmonsters in procenten van het eetbare deel.

<table>
<thead>
<tr>
<th>bemonsteringsplaats</th>
<th>locatie 1</th>
<th>locatie 2</th>
<th>locatie 3</th>
<th>gemiddelde</th>
</tr>
</thead>
<tbody>
<tr>
<td>monstercode RIVM</td>
<td>930672</td>
<td>930673</td>
<td>930674</td>
<td>3 locaties</td>
</tr>
</tbody>
</table>

vetgehalte(%)	30.6	24.4	18.9	26.4
vetgehalte(%)	28.1	24.0	19.4	23.8
gemiddelde	29.4	24.2	19.2	24.2

2.3 Isolatie en zuivering

Ugilec 141
Voor de isolatie van Ugilec 141 is van het tweede deelmonster, in duplo, ongeveer 1 gram vet opgelost in petroleum ether. Hieraan is een interne standaardoplossing toegevoegd, namelijk \(^{13}\)C\(_{6}\) 2', 3, 4, 6-tetrachloor-6-methylidifenylmethaan (DBDT 80). Voor de vetverwijdering met behulp van gedesactiveerde aluminiumoxyde is telkens een deelmonster van ongeveer 200 mg vet in bewerking genomen. De eluate van deze deelmonsters zijn samengevoegd en vervolgens gezuiverd over gakte de bedwaractacte silicagel. Aan het uiteindelijk extract is \(^{13}\)C\(_{12}\) PCB 141 als injectiestandaard toegevoegd.

Indicator- en mono-ortho PCB’s
Voor de isolatie van de indicator- en mono-ortho PCB’s is ook van het tweede deelmonster, in duplo, ongeveer 250 mg vet opgelost in petroleum ether. Hieraan is een interne standaardoplossing van PCB 143, 155 en 207 toegevoegd. De vetverwijdering over gedesactiveerde aluminiumoxyde en de zuivering over gaktedevere silicagel heeft op dezelfde wijze plaatsgevonden als bij Ugilec 141.
PCDD/F’s en planaire PCB’s
De isolatie en zuivering van PCDD/F’s en planaire PCB’s vindt plaats via een standaardprocedure die eerder in detail is beschreven [9 - 10]. Hiervoor is het eerste deelmonster genomen waaraan vooraf \(^{13}\text{C}_2\) gelabelde PCDD/F’s en planaire PCB’s zijn toegevoegd. Het vetextract wordt ontdaan van vet en interfererende stoffen door middel van kolomchromatografie over achtereenvolgens actieve kool (Carbosphere) en geactiveerde aluminiumoxide.

2.4 Analyse

Ugilec 141
De analyse van Ugilec 141 is uitgevoerd met behulp van capillaire GC/MS (electron impact, EI). Het gehalte van Ugilec 141 is gebaseerd op de som van de oppervlakten van de vijf meest intensieve pieken van Ugilec 141 [8]. Bij de berekening van de gehalten op een externe standaard ijklijn wordt gecorrigeerd voor verliezen tijdens de opwerking met behulp van de vooraf toegevoegde \(^{13}\text{C}_6\) DBDT 80 gelabelde interne standaard. Identificatie is gebaseerd op het Ugilec 141 patroon en de verhouding van de isotoop ratio’s van Ugilec 141 en \(^{13}\text{C}_6\) DBDT 80.

Indicator- en mono-ortho PCB’s
De bepaling van de indicator- en mono-ortho PCB’s is uitgevoerd met behulp van capillaire GC met electroninvang detectie (GC/ECD). De analyses worden uitgevoerd door gebruik te maken van twee kolommen van verschillende polariteit, namelijk Ultra 2 en PONA. De identificatie van de componenten vindt plaats door vergelijking van de retentietijden in de monsterextracten met die van de corresponderende referentiestoffen van een extern standaardmengsel. De kwantificering vindt plaats door vergelijking van de respectievelijke piekhoogten in de monsterextracten met die van de corresponderende referentiestoffen van een extern standaardmengsel, waarbij PCB 155 als interne standaard is gebruikt. De gegevens die werden verkregen op de tweede kolom (PONA) zijn als controle gebruikt.

PCDD/F’s en planaire PCB’s
De analyse van de PCDD/F’s en planaire PCB’s is uitgevoerd volgens dezelfde standaard procedures als beschreven onder isolatie en zuivering [9,10]. Analyse van het gezuiverde extract vindt plaats met behulp van capillaire gaschromatografie en hoogoplossend vermogen massaspectrometrie (GC-HRMS). Identificatie geschiedt aan de hand van de vooraf toegevoegde mengsel van de \(^{13}\text{C}_2\) gelabelde PCDD/F’s en planaire PCB’s. De kwantificering wordt uitgevoerd door vergelijking van de verhouding \(^{12}\text{C} / ^{13}\text{C}\) in respectievelijk het monster en een daarvoor gemaakt standaardmengsel. De analyse van de PCDD/F’s en planaire PCB’s gebeurt separaat.
3 RESULTATEN EN DISCUSSIE

3.1 Gehalten

In Tabel 3 worden de gehalten van de bepaalde komponenten in de drie poolmonsters paling weergegeven. De in tabel 3 weergegeven gehalten aan PCDD/F’s en planaire PCB’s in palingmonsters zijn uitgedrukt in pg per gram vet. De gehalten van de indicator PCB’s, de mono-ortho PCB’s en Ugilec 141 worden weergegeven in μg/g vet. Ten opzichte van de PCDD/F’s komen de planaire PCB’s voor op een niveau dat 10 -100 keer zo hoog is. Uitgedrukt op vetbasis zijn de gehalten aan PCDD/F’s op de drie locaties ongeveer gelijk. Van de planaire PCB’s wordt van PCB126 het hoogste gehalte aangetoond. Het niveau van voorkomen van PCB 126 is op drie locaties gelijk, terwijl de andere twee congeneren op locatie 1 op een hoger niveau worden aangetoond dan op de locaties 2 en 3. Het niveau van voorkomen van de indicator PCB’s, met uitzondering van PCB 28, en de mono-ortho PCB’s op locatie 1 (Roermond) is hoger dan op de twee andere locaties. Op locatie 2 wordt ten opzichte van de twee andere locaties het hoogste gehalte aan Ugilec 141 aangetoond. De vastgestelde verschillen tussen de op de drie locaties aangetoonde gehalten zijn echter relatief klein. Het grootste verschil is te zien bij de mono-ortho PCB’s waar het verschil in gehalten tot ongeveer een factor vier bedraagt. Op locatie 1 is de korst paling met de minste hoeveelheid filet gevangen, deze paling heeft echter het hoogste vetgehalte. Omdat de gevonden verschillen relatief klein zijn wordt er geen onderscheid gemaakt tussen de drie locaties.

3.2 Kwaliteitskenmerken

Ugilec 141

Bij de validatie van de methode [8] werd voor het traject van 0.1 tot 8 mg/kg olie een herhaalbaarheid vastgesteld van 2-9 %. Gebaseerd op duplo-metingen werd tijdens dit onderzoek een relatieve standaarddeviatie van 3-9 % vastgesteld.

Indicator- en mono-ortho PCB’s

Gebaseerd op duplo-metingen werd tijdens dit onderzoek een relatieve standaarddeviatie van 0.1-9 % vastgesteld.

PCDD/F’s en planaire PCB’s

De prestatiekenmerken worden per meetserie gecontroleerd met behulp van analyses van kwaliteitscontrolemonsters koemelk. Tijdens dit onderzoek werd een dioxinegehalte van 3.17 pg TEQ / g vet bepaald waarmee, na 43 waarnemingen, een gemiddeld dioxinegehalte van 3.04 ± 0.19 pg TEQ / g vet werd vastgesteld. Voor de planaire PCB’s werd een gehalte van 3.22 pg TEQ / g vet bepaald waarmee, na 25 waarnemingen, een gemiddeld gehalte van 3.23 ± 0.19 pg TEQ / g vet werd vastgesteld.
<table>
<thead>
<tr>
<th>Bemonsteringsplaats</th>
<th>Lokatie 1</th>
<th>Lokatie 2</th>
<th>Lokatie 3</th>
<th>Gemiddelde</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIVM / LOC-code</td>
<td>930672</td>
<td>930673</td>
<td>930674</td>
<td></td>
</tr>
<tr>
<td>Lokatiedeschrijving</td>
<td>Roermond</td>
<td>Herkenbosch</td>
<td>Vlodrop</td>
<td></td>
</tr>
<tr>
<td>Situering</td>
<td>Verst van grens</td>
<td>middenlocatie</td>
<td>nabij grens</td>
<td></td>
</tr>
<tr>
<td>Vetgehalte(%)</td>
<td>29.4</td>
<td>24.2</td>
<td>19.2</td>
<td>24.3</td>
</tr>
<tr>
<td>PCDD’s (pg/g vet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2378 TCDD</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>12378 PCDD</td>
<td>3.8</td>
<td>4.2</td>
<td>3.7</td>
<td>3.9</td>
</tr>
<tr>
<td>123478 HxCDD</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>123678 HxCDD</td>
<td>10.4</td>
<td>7.6</td>
<td>7.2</td>
<td>8.4</td>
</tr>
<tr>
<td>123789 HxCDD</td>
<td>1.4</td>
<td>1.5</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>1234678 HpCDD</td>
<td>6.5</td>
<td>5.3</td>
<td>6.1</td>
<td>6.0</td>
</tr>
<tr>
<td>Octa CDD</td>
<td>14.8</td>
<td>10.7</td>
<td>10.7</td>
<td>12.1</td>
</tr>
<tr>
<td>PCDF’s (pg/g vet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2378 TCDF</td>
<td>0.3</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>12378 PCDF</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>23478 PCDF</td>
<td>5.2</td>
<td>5.5</td>
<td>5.8</td>
<td>5.5</td>
</tr>
<tr>
<td>123478 HxCDF</td>
<td>3.1</td>
<td>3.1</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>123678 HxCDF</td>
<td>2.1</td>
<td>1.8</td>
<td>2.1</td>
<td>2.0</td>
</tr>
<tr>
<td>123789 HxCDF</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>234678 HxCDF</td>
<td>1.9</td>
<td>1.8</td>
<td>2.0</td>
<td>1.9</td>
</tr>
<tr>
<td>1234678 HpCDF</td>
<td>2.5</td>
<td>2.1</td>
<td>2.4</td>
<td>2.3</td>
</tr>
<tr>
<td>1234789 HpCDF</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Octa CDF</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Planaire PCB’s (pg/g vet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 77</td>
<td>227</td>
<td>178</td>
<td>184</td>
<td>196</td>
</tr>
<tr>
<td>PCB 126</td>
<td>831</td>
<td>831</td>
<td>779</td>
<td>814</td>
</tr>
<tr>
<td>PCB 169</td>
<td>181</td>
<td>135</td>
<td>154</td>
<td>157</td>
</tr>
<tr>
<td>Indicator PCB’s (µg/g vet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 28</td>
<td>0.062</td>
<td>0.065</td>
<td>0.062</td>
<td>0.063</td>
</tr>
<tr>
<td>PCB 52</td>
<td>1.7</td>
<td>1.1</td>
<td>0.81</td>
<td>1.2</td>
</tr>
<tr>
<td>PCB 101</td>
<td>1.0</td>
<td>0.61</td>
<td>0.50</td>
<td>0.71</td>
</tr>
<tr>
<td>PCB 138</td>
<td>1.6</td>
<td>1.0</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>PCB 153</td>
<td>1.7</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>PCB 180</td>
<td>0.64</td>
<td>0.38</td>
<td>0.45</td>
<td>0.49</td>
</tr>
<tr>
<td>mono-ortho PCB’s (µg/g vet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB 105</td>
<td>1.23</td>
<td>0.43</td>
<td>0.35</td>
<td>0.67</td>
</tr>
<tr>
<td>PCB 118</td>
<td>1.7</td>
<td>0.68</td>
<td>0.60</td>
<td>0.99</td>
</tr>
<tr>
<td>Ugilec 141 (µg/g vet)</td>
<td>0.77</td>
<td>1.1</td>
<td>0.67</td>
<td>0.85</td>
</tr>
</tbody>
</table>
In Tabel 4 worden de gehalten van PCDD/F’s, PCB’s en Ugilec 141 in 2,3,7,8-TCDD-equivalenten weergegeven in vergelijking met eerdere studies.

Tabel 4: Gehalten van PCDD/F’s, PCB’s en Ugilec 141 in 2,3,7,8-TCDD-equivalenten (I-TEQ) in Nederlandse paling, uitgedrukt per gram vet (tenzij anders aangegeven).

<table>
<thead>
<tr>
<th></th>
<th>PCDD/F’s (pg TEQ/g vet)</th>
<th>Som 3 plan. PCB’s (pg TEQ/g vet)</th>
<th>PCB 105 (pg TEQ/g vet)</th>
<th>PCB 118 (pg TEQ/g vet)</th>
<th>Ugilec 141 (ng TEQ/g vet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deze studie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Roermond</td>
<td>7.6</td>
<td>86.2</td>
<td>123</td>
<td>85</td>
<td>7.7</td>
</tr>
<tr>
<td>- Herckenbosch</td>
<td>7.6</td>
<td>85.6</td>
<td>43</td>
<td>34</td>
<td>10.7</td>
</tr>
<tr>
<td>- Vlodrop</td>
<td>7.5</td>
<td>80.5</td>
<td>35</td>
<td>30</td>
<td>6.7</td>
</tr>
<tr>
<td>- paling</td>
<td>28</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(mengmonster NL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vd Valk ea 1989 [12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Roer</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Ned opp water (n=9)</td>
<td>2.47 - 7.6</td>
<td>0.42 - 18</td>
<td>1.3 - 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RIVO 1992 [13]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Roer 1991</td>
<td>163</td>
<td>67.5</td>
<td>58.3</td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td>- Ned opp water (n=39)</td>
<td>2.9 - 63</td>
<td>0.19 - 11</td>
<td>0.79 - 34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In dit rapport worden de Toxiciteits Equivalentie Factoren (TEF’s) gebruikt zoals deze door de “Werkgroep Toxiciteits Equivalentie Factoren” zijn voorgesteld [14]. Door Murk ea [15] werd onderzoek verricht naar de toxiciteit van Ugilec 141. In de verschillende toxiciteitstesten werden geen duidelijke verschillen in toxiciteit vastgesteld tussen Ugilec 141, Aroclor 1254 en PCB 77. Gebaseerd op deze gegevens werd voor Ugilec 141 een factor 0.01 gehanteerd, een factor die eveneens door de Werkgroep Toxiciteits Equivalentie Factoren voor PCB 77 werd voorgesteld. In de tabel van bijlage 1 zijn de toxiciteitsfactoren voor de verschillende congeneren weergegeven.
PCDD/F’s

De gehalten, uitgedrukt in pg I-TEQ / g vet, van de PCDD/F’s in de palingen afkomstig uit de Roer die tijdens dit onderzoek werden bepaald, liggen boven de gemiddelde gehalten die werden vastgesteld in palingen uit Nederlandse oppervlaktewateren van 1989 [12].

PCDD/F-gehalten, uitgedrukt in pg I-TEQ / g vet, in paling afkomstig uit de Roer liggen op een hoger niveau dan de gehalten in paling afkomstig uit andere Nederlandse rivieren. De PCDD/F-gehalten, uitgedrukt in pg I-TEQ / g vet, in paling afkomstig uit de Roer geven in de tijd een dalende trend te zien.

Planaire PCB’s

Tijdens dit onderzoek werd voor de som van de gehalten van de drie planaire PCB’s, uitgedrukt in TEQ op vetbasis, een voor de drie locaties gemiddeld gehalte vastgesteld van 84.1 pg TEQ / g vet. Vergeleken met het niveau dat door het RIVO [13] in 1991 in de Roer werd bepaald, 163 pg TEQ / g vet, is een duidelijke afname waarneembaar. Evenals voor de in de Roer vastgestelde gehalten aan PCDD/F’s geldt voor de in de Roer vastgestelde gehalten aan planaire PCB’s, dat deze liggen boven de gemiddelde gehalten die werden vastgesteld in palingen uit Nederlandse oppervlaktewateren, onderzocht in 1991 door het RIVO [13].

In het voedingsonderzoek van Liem [11] werd in 1991 voor paling een niveau vastgesteld van 6.05 pg TEQ/g vet; het tijdens dit onderzoek vastgestelde niveau ligt daar ruim boven.

Van de onderzochte planaire PCB’s is het gehalte van PCB 126 het hoogste. Aan PCB 126 wordt, in vergelijking met PCB 77 en PCB 169, tevens de hoogste toxiciteitsrelevantiefactor toegerekend: 0.1 voor PCB 126 ten opzichte van 0.01 en 0.005 voor respectievelijk PCB 77 en PCB 169. Dit betekent dat PCB 126 van de planaire PCB’s veruit de grootste bijdrage levert aan de toxiciteit.

Indicator en mono-ortho PCB’s

Op twee locaties in de Roer, Roermond en Herkenbosch, wordt voor PCB 52 een hoger gehalte gevonden dan de waternorm van 0.20 mg/kg filet. Op de locatie 1, Roermond, wordt een overschrijding van de norm voor PCB 118 vastgesteld. De overige gehalten overschrijden de norm niet.

Tabel 5: PCB-gehalten in rode paling uit de Roer bij Vlodrop in mg/kg filet [16]

<table>
<thead>
<tr>
<th></th>
<th>PCB 28</th>
<th>PCB 52</th>
<th>PCB 101</th>
<th>PCB 118</th>
<th>PCB 153</th>
<th>PCB 138</th>
<th>PCB 180</th>
<th>PCB 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>norm*</td>
<td>0.50</td>
<td>0.20</td>
<td>0.40</td>
<td>0.40</td>
<td>0.50</td>
<td>0.50</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>jaar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>0.12</td>
<td>3.0</td>
<td>1.3</td>
<td>0.98</td>
<td>0.44</td>
<td>0.58</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>0.11</td>
<td>3.1</td>
<td>1.3</td>
<td>1.2</td>
<td>0.59</td>
<td>0.60</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>0.046</td>
<td>1.1</td>
<td>0.62</td>
<td>0.59</td>
<td>0.39</td>
<td>0.46</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>RIVO-onderzoek[13]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>0.019</td>
<td>0.3</td>
<td>0.14</td>
<td>0.19</td>
<td>0.28</td>
<td>0.20</td>
<td>0.089</td>
<td>0.11</td>
</tr>
<tr>
<td>RIVM-onderzoek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>0.012</td>
<td>0.16</td>
<td>0.096</td>
<td>0.11</td>
<td>0.21</td>
<td>0.20</td>
<td>0.087</td>
<td>0.067</td>
</tr>
</tbody>
</table>

*: Warenwetnorm in mg/kg filet

Uit Tabel 5 blijkt dat de gehalten van de geanalyseerde PCB-congeneren een dalende trend vertonen. Hetgeen ook al uit het onderzoek van het RIVO uit 1991 werd geconcludeerd. In het onderstaande diagram (figuur 2) wordt de trend in de tijd voor een aantal PCB-congeneren weergegeven.

![Enkele PCB-congeneren in de tijd](image)

Figuur 2: Niveau van enkele PCB-congeneren in de tijd.
Ugilec 141

In Nederland wordt Ugilec 141 in 1985 voor het eerst in paling aangetroffen in de Roer (tabel 6). De hoogste gehalten worden gevonden in 1986; deze piek valt samen met hoge gehalten aan licht gechlloreerde PCB's (met name PCB 52) in paling uit de Roer. De laatste jaren neemt het gehalte aan Ugilec 141 in de grote rivieren in Nederland af [18]. In 1993 was ten opzichte van voorgaande jaren het niveau weer gedaald tot 140 µg/kg product [19]. In de in dit onderzoek onderzochte monsters paling wordt geheel in overeenstemming met de verwachte trend, gebaseerd op voornoemde studies, ongeveer eenzelfde gehalte aan Ugilec 141 gevonden, namelijk 130 µg/kg product.

Tabel 6: Ugilec 141 in paling (µg/kg op productbasis) in de Nederlandse rivieren van 1984 tot 1992 [18,19]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Roer, Vlodrop</td>
<td><10</td>
<td>3100</td>
<td>9400</td>
<td>1100</td>
<td>4800</td>
<td>1300</td>
<td>1300</td>
<td>530</td>
<td>490</td>
<td>140</td>
</tr>
<tr>
<td>Maas, Eijsden</td>
<td>nb</td>
<td>nb</td>
<td>nb</td>
<td>nb</td>
<td><15</td>
<td>150</td>
<td><25</td>
<td><10</td>
<td><20</td>
<td></td>
</tr>
<tr>
<td>Maas,Heusden/Keizersveer</td>
<td>nb</td>
<td>nb</td>
<td>nb</td>
<td>nb</td>
<td>200</td>
<td>100</td>
<td>230</td>
<td>42</td>
<td><10</td>
<td><20</td>
</tr>
<tr>
<td>Rijn, Lobith</td>
<td>nb</td>
<td>nb</td>
<td>nb</td>
<td>nb</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>34</td>
<td>10</td>
<td>nb</td>
</tr>
</tbody>
</table>

nb: niet bepaald.

3.3 Congeneerpatronen

PCB's

Door de Boer [17] werd beschreven dat het patroon van voorkomende PCB-congeneren in monsters paling afkomstig uit de Roer afwijken van het patroon van het PCB-patroon van monsters paling die afkomstig zijn van andere locaties. Er worden vooral veel vluchtige congeneren aangetroffen waarbij het hoge gehalte van PCB 52 opvalt. Pas na 1992 is het gehalte van PCB 52 lager dan dat van PCB 153, die normaliter als hoogste congeneer aanwezig is. Het lekken van hydraulische systemen in de Duitse mijnindustrie is een verdachte bron.

Het in dit onderzoek waargenomen PCB-patroon kan maar ten dele met het voornoemde patroon worden vergeleken omdat slechts een beperkt aantal PCB-congeneren werd bepaald. Wel kan worden vastgesteld dat de dalende trend van PCB 52 zich heeft doorgezet; ten opzichte van de overige bepaalde PCB-congeneren is de relatieve bijdrage van PCB 52 kleiner geworden. De verhouding tussen de PCB-congeneren 101, 118, 153, 138 en 180 geeft ongeveer eenzelfde beeld als eerder voor paling in de Roer werd vastgesteld. In figuur 3 worden de PCB-patronen van 1991 en 1993 met elkaar vergeleken.

Ugilec 141

Bij eerdere onderzoeken werd in vis een afwijkend isomeer-patroon gevonden in vergelijking met het patroon van zuiver Ugilec 141, wat wijst op een verschil in metabolisme van de diverse DBDT-isomeren [1-3, 16]. Ook in het onderhavige onderzoek is het Ugilec 141-patroon in de monsters paling afkomstig uit de Roer eveneens afwijkend van het patroon van het standaardmengsel van Ugilec 141. In figuur 4 worden de patronen van een zuivere Ugilec 141 standaardoplossing en dat van een palingmonster met elkaar vergeleken. De met een * gemerkte pieken zijn de pieken waarop gekwantificeerd is. De piek met een Δ is in paling vele malen hoger dan in het standaardmengsel. p,p'-DDE kan in grote hoeveelheden voorkomen in vis. Uit de literatuur blijkt dat p,p'-DDE (C14H8Cl4) Ugilec 141 kan storen [1, 2, 16]. Alhoewel p,p'-DDE als molecuulmassa 316 heeft stoort het met zijn (M + 2) en (M+ 4) fragmentatie op de sporen van Ugilec 141. Uit figuur 5 blijkt echter dat p,p'-DDE elueert vóór Ugilec 141, zodat de kwantificering van Ugilec 141 juist kan worden uitgevoerd.
Figuur 4: Chromatogrammen van a) een Ugilec 141-standaard en b) een palingmonsterextract
Figuur 5: Chromatogrammen van a) een Ugilec 141- en b) een p,p'-DDE-standaard
Relatieve bijdragen van de onderzochte stofgroepen aan het totale TEQ-gehalte
In de onderstaande tabel 7 wordt in een overzicht samengevat wat de bijdragen van de onderzochte komponenten zijn aan het totaal gehalte uitgedrukt in TEQ op productbasis.
Zoals hiervoor al aangegeven is wordt de grootste bijdrage aan de toxiciteit van de onderzochte planaire PCB’s geleverd door PCB 126 door het hoge gehalte in combinatie met de relatief hoge toegekende toxiciteitsequivalentiefactor van 0.1.
Aan de onderzochte mono-ortho PCB’s, PCB 105 en PCB 118, wordt weliswaar een lagere toxiciteitsequivalentiefactor toegekend, maar door het hoge gehalte (μg-niveau) is de bijdrage van de som van de twee onderzochte mono-ortho PCB’s aan de totale toxiciteit van eenzelfde niveau als van de onderzochte planaire PCB’s.
Uit berekeningen met een toxiciteitsequivalentiefactor van 0.01 voor Ugilec 141, gebaseerd op eerder onderzoek, blijkt dat Ugilec 141 een ongeveer even grote bijdrage levert aan de totale toxiciteit als de PCDD/F’s [15].
De bijdragen van Ugilec 141 en de PCDD/F’s zijn klein vergeleken met de bijdragen van de planaire PCB’s en de mono-ortho PCB’s. De som van de gehalten van de onderzochte planaire PCB’s en de mono-ortho PCB’s zijn voor gemiddeld ruim negentig procent verantwoordelijk voor het totaal gehalte uitgedrukt in TEQ op productbasis.

<table>
<thead>
<tr>
<th>component</th>
<th>% bijdrage</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCDD/F’s</td>
<td>3.8</td>
</tr>
<tr>
<td>Planaire PCB’s</td>
<td>41.9</td>
</tr>
<tr>
<td>Mono-ortho PCB’s</td>
<td>50.1</td>
</tr>
<tr>
<td>Ugilec 141</td>
<td>4.2</td>
</tr>
</tbody>
</table>
4 CONCLUSIES

Met behulp van de bij LOC ontwikkelde analysemethoden konden, via een gecombineerde voorbewerking, de verschillende stofgroepen in paling afkomstig uit de Roer worden bepaald. Onder de gegeven omstandigheden bleek p,p’-DDE de analyse van Ugiele 141 niet te storen.

In paling afkomstig uit de Roer komen planaire PCB’s voor op een niveau van 0.2-0.8 ng/g vet. PCDD/F’s komen voor op een niveau van 0.1-12 pg/g vet. De mono-ortho PCB’s, indicator PCB’s en Ugiele 141 zijn aangetoond op een niveau van 0.1-1.2 μg/g vet. Het verschil in niveau van voorkomen, berekend op vetbasis, van de mono-ortho PCB’s, indicator PCB’s en Ugiele 141 ten opzichte van het niveau van voorkomen van PCDD/F’s bedraagt ongeveer een factor 10⁶ (pg/g tot μg/g).

Het gehalte van de planaire PCB’s, uitgedrukt in TEQ, wordt hoofdzakelijk bepaald door de bijdrage van PCB 126. De relatieve bijdragen van de planaire PCB’s en de som van de twee onderzochte mono-ortho PCB’s, PCB 105 en PCB 118, aan het totaal gehalte uitgedrukt in 1-TEQ liggen ongeveer op eenzelfde niveau (42 en 50 %).
Hetzelfde geldt voor de relatieve bijdragen van Ugiele 141 en de PCDD/F’s aan het totaal gehalte uitgedrukt in TEQ die voor beide stofgroepen ongeveer 4% bedragen.

Dit houdt in dat de som van de gehalten van de onderzochte planaire PCB’s en de mono-ortho PCB’s voor gemiddeld ruim negentig procent verantwoordelijk is voor het totaal gehalte uitgedrukt in TEQ op productbasis.

De verschillen in de gehalten, uitgedrukt op vetbasis, in paling op de drie locaties in de Roer zijn relatief klein. Hierbij kan worden opgemerkt dat op locatie 2 het hoogste gehalte aan Ugiele 141 wordt aangetroffen terwijl op locatie 1 de hoogste gehalten aan planaire PCB’s (als som) en indicator en mono-ortho PCB’s worden aangetoond.
Op de 3 locaties in de Roer worden PCDD/F’s op ongeveer eenzelfde niveau aangetoond.

De tijdens dit onderzoek gevonden gehalten in paling afkomstig uit de Roer zijn vergeleken met eerdere studies. Voor alle onderzochte stofgroepen kan worden vastgesteld dat een afnemende trend in de tijd waarneembaar is. Tegelijkertijd kan worden vastgesteld dat de aangetoonde niveaus in paling afkomstig uit de Roer boven de niveau’s liggen van die in overige Nederlandse oppervlaktewateren.
REFERENTIES

1. Fürst P., Krüger C., Meemken H.A., Groebel W.
Determination of the polychlorinated biphenyl substitute ugilec (tetrachlorobenzyltoluenes) in fish. J. Chromatogr. 405, 1987, 311-317

2. Fürst P., Krüger C., Meemken H.A., Groebel W.
Gehalte des PCB-Ersatzproduktes Ugilec (Tetrachlorobenzyltoluole) in Fischen aus Gebieten mit intensivem Bergbau
Z. Lebensm. Unters. Forsch. 185, 1987b, 394-397

3. Rönnefahrt B.
Nachweis und Bestimmung des PCB-Ersatzproduktes Ugilec 141 in Wasserproben aus Fischen aus der Lippe
Deutsche Lebensm. Rundschau 7, 1987, 214-218

4. Wet milieugevaarlijke stoffen Uitvoeringsvoorschriften (C-4.10) BESLUIT van 13 december 1989, Stb. 560 tot vaststelling van een algemene maatregel van bestuur krachtens artikel 24 van de Wet milieugevaarlijke stoffen (Ugilec 121-, Ugilec 141- en DDBT-besluit Wet milieugevaarlijke stoffen)

5. Leonards P., De Voogt P.

Basisdocument dioxinen RIVM-rapport 710401.024, feb. 1993

7. Temme, E.H.F.
Onderzoek naar mogelijke gezondheidsrisico's door consumptie van verontreinigde paling uit de Roer.
Stageverslag Milieugezondheidskunde, RUL, juli 1994

Onderzoek naar de analyse en het voorkomen van Ugilec 141 dichloorbenzyl dichloortoluenen) in Nederlandse afvalolie. RIVM-rapport 692210001, juli 1994

Analysis and occurrence of toxic planar PCBs, PCDDs and PCDFs in milk by use of carbosphere activated carbon.

Dioxinen en planaire PCB’s in voeding. Gehalten in voedingsproducten en inname door de Nederlandse bevolking. RIVM-rapport 730501034, Juli 1991
 Bioaccumulation in yellow eel and perch from the Dutch branches of the Rhine - mercury,
 organochlorine compounds and polycyclic aromatic hydrocarbons.
 IJmuiden: RIVO, MO 89-205
13. RIVO, 1992
 RIVO rapport MO (1992)
14. Werkgroep TEF.
 The Toxicity of Tetrachlorobenzyltoluenes (Ugilec 141) and Polychlorobiphenyls (Aroclor
 1254 and PCB-77) Compared in Ah-responsive and Ah-nonresponsive Mice
 Environmental Pollution 72 (1991) 57-67
16. Wester P.G., Van der Valk F.
 Tetrachlorobenzyltoluenes in eel from the Netherlands
17. Boer, J. de. Proefschrift
 Analysis and Biomonitoring of Complex Mixtures of Persistent Halogenated Micro-
 Contaminants.
 januari 1995
18. Visserijonderzoek Jaarverslag 1991 (RIVO-DLO; LEI-DLO; IVP-TNO)
19. Metingen in het milieu in Nederland 1993, CCRX rapport Coördinatie-Commissie voor
 Metingen in het Milieu (CCRX) januari 1995.
20. Kerkhoff M. en de Boer J. De PCB verontreiniging van rode paling trends in chloorbifenyl
Bijlage Gebruikte Toxiciteits Equivalentie Factoren

<table>
<thead>
<tr>
<th>Komponent</th>
<th>TEF</th>
<th>Komponent</th>
<th>TEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCDD's</td>
<td></td>
<td>Planaire PCB's</td>
<td></td>
</tr>
<tr>
<td>2378 TCDD</td>
<td>1</td>
<td>PCB 77</td>
<td>0.01</td>
</tr>
<tr>
<td>12378 PCDD</td>
<td>0.5</td>
<td>PCB 126</td>
<td>0.1</td>
</tr>
<tr>
<td>123478 HxCDD</td>
<td>0.1</td>
<td>PCB 169</td>
<td>0.005</td>
</tr>
<tr>
<td>123678 HxCDD</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>Mono-ortho PCB's</td>
<td></td>
</tr>
<tr>
<td>1234678 HpCDD</td>
<td>0.01</td>
<td>PCB 105</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Octa CDD</td>
<td>0.001</td>
<td>PCB 118</td>
<td>5.10^{-5}</td>
</tr>
<tr>
<td>PCDF's</td>
<td></td>
<td>Ugilee</td>
<td>0.01</td>
</tr>
<tr>
<td>2378 TCDF</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12378 PCDF</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23478 PCDF</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123478 HxCDF</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123678 HxCDF</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>123789 HxCDF</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>234678 HxCDF</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1234678 HpCDF</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1234789 HpCDF</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Octa CDF</td>
<td>0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>