A toxicokinetic model for the carry-over of dioxins and PCBs from feed and soil to eggs

J. C. H. Van Eijkeren\textsuperscript{a,}\*, M. J. Zeilmaker\textsuperscript{a}, C. A. Kan\textsuperscript{b}, W. A. Traag\textsuperscript{c} and L. A. P. Hoogenboom\textsuperscript{c}

\*Correspondence: Email: jan.van.eijkeren@rivm.nl.

This study was sponsored by the Dutch Ministry of Agriculture, Nature Management and Food Quality.

\textsuperscript{a}RIVM National Institute of Public Health and the Environment, Bilthoven, The Netherlands

\textsuperscript{b}Animal Sciences Group of Wageningen UR, Division Nutrition and Food, Lelystad, The Netherlands

\textsuperscript{c}RIKILT-Institute of Food Safety, Wageningen, The Netherlands.

Abstract

A mathematical model for the kinetics of carry-over of dioxins and dioxin-like PCBs from feed mixed with contaminated oil to eggs has been developed. This model incorporates uptake of the compounds over the gut wall and their subsequent transport by blood, distribution over the body, hepatic metabolism and excretion through egg yolk fat. The model is analysed with respect to the possibility of identifying as yet unknown model parameters by fitting these to the experimental data. The model was fitted to the experimental data on the carry-over from feed to eggs. The calibrated model was applied to calculate the steady-state concentrations in eggs which were compared to European Maximum Residue Levels for dioxins in feed and eggs, showing that these limits do not match. The feed limit of 0.75ngTEQ/kg should be reduced to about 0.17ngTEQ/kg in order to guarantee egg levels below the residue limit of 3pgTEQ/g fat. Experimental results of carry-over from contaminated soil were used to estimate the absorption of dioxin-like compounds from soils as compared to the absorption from feed, resulting in a value around 40 to 60% absorption from soil as compared to around 90% absorption from feed.

Introduction

Controlled exposure studies under laboratory conditions have been performed to examine carry-over of dioxins and dioxin-like PCBs to eggs from feed mixed with contaminated oil and from clean feed mixed with contaminated soil (Hoogenboom et al. 2006). The experiments with contaminated feed not only served the determination of steady state carry-over, but the study of the kinetics of carry-over as well. The work also aimed to develop a computer model to describe carry-over. Only a few authors have until now described a model to relate contamination levels of eggs to the contamination of ingested soil or feed. Schuler et al. (1997) presented the calculation of total TEQ contamination of eggs from ingestion of soil, based on soil contamination levels, congener-specific transfer efficiencies and background feed contamination levels. Their model did not contain time as a variable and implicitly assumed steady state contamination of the eggs. However, egg contamination caused by uptake from contaminated soil or feed is a kinetic process and the apparent contamination levels may not represent a steady state. Huygebaert et al. (2002) developed a kinetic model for
the excretion of PCBs in egg yolks from contaminated feed. Their model assumption was that excretion is governed by the hydraulics of, and absorption in the animal intestinal tract. However, not only is absorption of contaminants over the intestinal wall an important aspect for the kinetics of egg contamination, but also the distribution of the contaminant over body tissues, its metabolism and the characteristics of excretion, i.e., laying efficiency and, for highly lipophilic contaminants like dioxins, egg lipid content.

This study concerned the modelling of the transfer of dioxins and dioxin-like PCBs from contaminated feed to eggs and their accumulation in fat tissue. A kinetic model was developed that considers the uptake of the contaminant, i.e., its absorption over the intestinal wall after oral intake, the distribution of the contaminant over the body and its elimination by hepatic metabolism and excretion by egg yolk fat. Experimental data on carry-over from feed to eggs provided by Hoogenboom et al. (2006) were used to calibrate the model, relating residues in eggs to exposure through feed at different contamination levels. Data obtained from a study by Hoogenboom et al. (2002), exhibited much higher dioxin and PCB levels, serving as model verification. The calibrated and validated model was applied to estimate uptake from another matrix, i.e., from contaminated soil added to clean feed. Moreover, the model was applied for comparing the European Maximum Residue Limits for dioxin residues (expressed as TEQ values) in feed and eggs.

Materials and methods

Experimental

All data for calibrating the model were obtained from the experiment described in the accompanying paper by Hoogenboom et al. (2006). Verification data were obtained from the study by Hoogenboom et al. (2002).

Modelling approach

The underlying physiologically-based pharmacokinetic (PBPK)-model describing the kinetics of carry-over of contaminants from feed to eggs is depicted in Figure 1 (upper panel). The corresponding compartment model in Figure 1 (lower panel) can be formulated mathematically as a set of two mass balances, representing the changes in absolute amounts of contaminants in respectively the central and the fat compartment.

\[
\begin{align*}
\frac{dA_c}{dt} &= F_{abs} D - (q_c + e_y + k)A_c + q_f A_f \\
\frac{dA_f}{dt} &= q_c A_c - q_f A_f
\end{align*}
\]  

(1)
Figure 1. Two compartment PBPK model (A) for the disposition of lipophilic compounds in egg yolk fat of laying hens. $A$ denotes the amounts of contaminant, $V$ the compartments volumes, $P$ partition with respect to blood. The fat compartment serves as a storage for the highly lipophilic contaminants. Fraction $F$ of the dose is absorbed over the gut wall into the central compartment. Elimination is through liver clearance and through excretion with egg yolk fat that is produced with weight $W_{y,f}$ per day with a laying efficiency of $\varepsilon$. $Q$ represents fat compartment blood flow. These processes can also described by the set of reduced parameters (B) derived from the PBPK model parameters (see Materials and methods), with $k$ for hepatic clearance, $y$ for excretion through the yolk and $q_c$ and $q_f$ being the compartment transfer parameters from central to fat compartment and vice versa.

Here, the reduced parameters expressed in terms of the unknown PBPK-model parameters
\[q_c = \frac{Q}{P_{e_1}V_{e_1}}, \quad q_f = \frac{Q}{P_{e_2}V_{e_2}}\]

\[y = \frac{P_{r_1}W_{r_1}T_{r_1}}{P_{r_2}V_{r_2}} \quad \text{and} \quad \dot{x} = \frac{CL}{P_{e_2}V_{e_2}}\]

are the rate constants of mass transfer from the central to the fat compartment and vice versa, excretion with egg yolk fat and hepatic clearance, respectively.

The time course of the concentration in egg yolk, expressed as pg TEQ/g yolk fat and in abdominal fat (pg TEQ/g fat) is observed. If the latter is representative of the residue levels in the fat compartment, than the models for these observations, can be derived from Equation (1) to be:

\[C_{y,f}(t) = \frac{y}{W_{r_1}} \cdot \frac{F_{\text{abs}}D}{r} \left(1 - \left(\frac{(\lambda_2 + r) e^{\lambda_2 t} - (\lambda_1 + r) e^{\lambda_1 t}}{\lambda_2 - \lambda_1}\right)\right)\]  

(3)

for the concentration in egg yolk fat, and

\[C_f(t) = \frac{1}{W_f} \cdot \frac{q_c F_{\text{abs}}D}{q_f} \left(1 - \left(\frac{\lambda_2 e^{\lambda_2 t} - \lambda_1 e^{\lambda_1 t}}{\lambda_2 - \lambda_1}\right)\right)\]  

(4)

for the concentration in abdominal fat. Here, \(r=\dot{v}y+k\) represents the total elimination of the compounds and

\[\lambda_1 = -\frac{1}{2} \left(\frac{q_c + r + q_f}{q_c + r + q_f + \sqrt{(q_c + r + q_f)^2 - 4q_f r}}\right)\]  

\[\lambda_2 = -\frac{1}{2} \left(\frac{q_c + r + q_f + \sqrt{(q_c + r + q_f)^2 - 4q_f r}}{q_c + r + q_f}\right)\]  

(5)

are the exponential rates of the slow, long lasting, terminal phase \((\lambda_1 \approx q_c/(q_c + q_f + r))\) and the fast, short lasting, initial phase \(\lambda_2 \approx q_c + q_f + r\).

Note, that the experimental data necessitate the introduction of a few additional parameters with respect to the model in Equation (1), such as the amount of fat in egg yolk which is known, and the weight of the fat compartment which is unknown. As a result, the model contains the four unknown kinetic parameters for transport and elimination, \(q_c, q_f, k\) and \(y\), the unknown absorbed fraction \(F_{\text{abs}}\) and the unknown fat compartment weight, \(W_r\).

Straightforward analysis shows that the inter compartment transfer rate parameters \(q_c\) and \(q_f\) can be identified unconditionally from the data. Therefore, these parameters can be freely varied to fit the data. However, the elimination rate parameters \(y\) and \(k\), the fraction absorbed and the fat compartment weight \(W_r\) can only be determined in relation to each other, i.e., the parameters

\[c_1 = r = \dot{v}y + k, \quad c_2 = y \cdot F_{\text{abs}}, \quad \text{and} \quad c_3 = F_{\text{abs}}/W_f\]  

(6)

could be varied freely to fit the data but not the parameters \(y, k, F_{\text{abs}},\) and \(W_r\) separately. Note that \(c_1\) denotes the total elimination from the system of the amount that is absorbed over the gut wall, \(c_2\) denotes the elimination through eggs of the amount that is ingested by the hens and \(c_3\) relates the experimentally determined abdominal fat concentrations to the unknown fraction of the contaminant that is absorbed.

Without introducing these new parameters of Equation (6) into the computer model, this problem can be resolved as follows. The fraction absorbed is 1 at
maximum, while the metabolism rate is 0 at minimum. If the model is fit to the data while the metabolism rate is kept constant, \( k=0 \), then the maximum value for the excretion rate \( y_{\text{max}}=c_1 \) can be determined from the data, as well as the minimum fraction absorbed, \( F_{\text{abs, min}} \), and the minimum weight of the fat compartment \( W_{y, \text{min}} \). This would represent the case that elimination by metabolism is negligible compared to elimination through eggs. Once these parameters are identified under this restrictive condition, then for \( F_{\text{abs, max}}=1 \), i.e., representing the case that the amount ingested is totally absorbed over the gut wall, the minimum value for the excretion rate is found to be the product \( y_{\text{min}}=y_{\text{max}} F_{\text{abs, min}} \) of the values found for the case \( k=0 \). From this minimum, the maximum value for the metabolism rate \( k_{\text{max}}=y_{\text{max}}-y_{\text{min}} \) can be found. The maximum value of the fat compartment weight follows from \( W_{f, \text{max}}=W_{f, \text{min}} F_{\text{abs, min}} \).

It is assumed that after ovulation, the yolk is no longer contaminated during egg white formation and deposition. Therefore, one should provide for a one-day delay between ovulation of the yolk and laying of the corresponding egg. Besides, in the long term, the daily loss by excretion is the product of laying efficiency and excretion per day, i.e., \( s \gamma \), the amount to be found in an excreted egg is proportional to \( y \) only. Moreover, one should provide for the time, \( \tau \), between the start of feeding contaminated feed and the first yolk ovulation thereafter, which is apparent as an off-set in the time course of egg contamination. This latter parameter is estimated from the data as well.

Results and discussion

The underlying physiologically based pharmacokinetic (PBPK-) model describing the kinetics of carry-over of contaminants from feed to eggs is depicted in Figure 1. The fat compartment comprises abdominal fat, subcutaneous fat, fat fraction of the skin, bone marrow and intermuscular fat. This compartment is characterized by its storage capacity, because of the extreme lipophilicity of the compounds, and by its relatively poor blood flow that may even be further limited by intra-tissue diffusion. Therefore, equilibrium between the concentration in this compartment and the concentration in blood is likely to be reached much slower, typically in the order of a few days, than equilibrium between the concentration in blood and other tissues.

The central compartment comprises all the other tissues, which will reach equilibrium with blood in the order of hours rather than in the order of days. After absorption, the contaminants enter the systemic blood circulation via the vena portae, i.e., into the central compartment \( (F_{\text{abs}}D) \). Biotransformation of the contaminants is assumed to take place in the liver, i.e., the central compartment, which is characterized by the parameter \( CL \) (for clearance). Excretion by egg yolk is from the blood, i.e., from the central compartment into yolk. The concentration in the growing yolks is assumed to be proportional to the concentration in blood (partition coefficient \( P_{y,c} \)). A model, based on the work of Donoghue and co-workers (Donoghue et al. 1996, 1997a, 1997b, Donoghue & Meyers 2000, Donoghue 2001) that also incorporated yolk growth as a determinant of the concentration had to be abandoned, because it systematically under-estimated yolk contamination levels during the initial phase. After ovulation, the yolk is assumed to be excreted from the central system because the lipophilic contaminants are not likely to interact between system and yolk during the phase of white formation. This is in contrast with non-lipophilic drugs. Yolk fat of weight \( W_{y,f} \) is produced with an efficiency of \( \varepsilon \) per day. Laying efficiency is determined experimentally and thus is a known model parameter.

Eggs in the trial weighed about 60 grams in the mean, of which according to Gilbert (1971) 32% was assumed to be yolk weight and 30% of yolk weight to be egg yolk fat weight, amounting to 5.8 g of yolk fat per egg. Laying performance
during the experiment was about 90%. Data on total TEQs, i.e., the sum TEQs of dioxins, furans, mono- and non-ortho PCBs, as presented in the accompanying article (Hoogenboom et al. 2006), were used for further calibration of the model. This consisted of fitting the two transfer rate constants, \( q_e \) and \( q_f \), the egg yolk excretion rate \( y \), the fraction absorbed \( F_{abs} \) and the fat compartment weight \( W_f \), while keeping the elimination constant \( k=0 \). The model was fitted to both the data on egg yolk and abdominal fat levels of all the different feed contamination levels simultaneously. Therefore, all the available data served a model fitting in only one optimization run, optimizing the log likelihood of the fitting parameter set. As yolks ovulate the day before the eggs are sampled, eggs yolk levels analysed from time \( t \) (day), were compared to computed levels at time \( t-1 \) (day). Moreover, as ovulation after the start of applying contaminated feed, considered to be \( t=0 \), takes place at an unknown time, another parameter, \( \tau<1 \) (day), was fitted to the data. Data fitting was performed with ACSL Optimize, optimizing the log likelihood of the parameter values. Fitted values were automatically converted to values for the other extreme case when \( F_{abs}=1 \), meaning complete absorption of the contaminants. Parameter values and ranges of values found by fitting are:

\[
q_e = 0.17[\text{day}^{-1}] \quad q_f = 0.078[\text{day}^{-1}], \\
\tau = 0.19[\text{day}] \\
0.043 \leq y \leq 0.053[\text{day}^{-1}] \quad 0 \leq k \leq 0.012[\text{day}^{-1}] \\
0.78 \leq F_{abs} \leq 1 \quad \text{and} \quad 230 \leq W_f \leq 290[\text{g}]
\]

of which the first line shows unconditional results, while the resulting interval estimates in the second and third line are mutually dependent. Taking, e.g., the minimum possible value for metabolism, \( k=0 \), the corresponding value for excretion is maximal and corresponding values for absorption and fat compartment weight are minimal. The value for the mean ovulation time \( \tau \) for the population was 0.19 day after the start of feeding contaminated feed, approximately four and a half hours. Clearly, considering the values for \( y \) and \( k \), the main route of elimination of dioxins from the body is by egg yolk fat and not metabolism. The fact that the transfer parameter from the central to the fat compartment \( q_e \) is higher than \( q_f \) implies that the distribution volume \( (P,V) \) of the fat compartment, i.e., its physiological volume corrected for its storage capacity as compared to the same volume of blood, is greater than the distribution volume \( (P,V) \) of the central compartment.

Figure 2 shows the residue data and the computed concentration-time curves for the total TEQ levels in both egg yolk and abdominal fat based on the fitted parameter values. Figure 3 shows similar curve fits for the total TEQ, but also the TEQ levels derived from the dioxins and furans, the non-ortho and the mono-ortho PCBs.
Figure 2. Measured levels (symbols) and computed concentration-time curves based on fitted parameter values for egg yolk (A), and abdominal fat (B). From lower to upper, data and computations correspond to increasing feed contamination levels of 0.34, 0.58, 0.76, 1.85 and 3.95ng of total TEQ (dioxins, furans, non- and mono-ortho PCBs)/kg feed. Hens were fed contaminated feed during the first 56 days of the experiment.
Figure 3. Levels and calculations for the different groups of contaminants in the yolk fat, based on the data obtained with feed contamination 1.85ng TEQ/kg feed. Upper line (*): total sum TEQ model fit. Next lower line (+): sum TEQ of the group of dioxins and furans; next lower line (x): sum TEQ of the group of non-ortho PCBs; next lower line (o): sum TEQ of the group of mono-ortho PCBs. The last three model calculations were based on the same parameter values that fitted the total TEQ data. At day 55, levels of ten individual eggs instead of a pooled sample are shown. Hens were fed contaminated feed during the first 56 days of the experiment.

Notice the clear bi-phasic time course of egg residue levels, while abdominal fat levels seem to be mono-exponential. The (short-lasting) fast first phase has a half-life of about 2.5 days. The (long-lasting) slow terminal phase appeared to have a terminal half-life of about 50 days. Fat storage behaves like a large capacitor, with slowly reacting kinetics, while egg levels that are proportional to blood levels reflect the small capacitance, fast reaction kinetics of blood levels. This phenomenon appears not only during the period of feeding contaminated feed, but also during the stage thereafter. The apparent difference in the kinetics of residues in eggs and abdominal fat is also depicted in Figure 4 for the 1.85ngTEQ/kg feed contamination group. Note that during the contamination period, abdominal fat residue levels are lower than egg residue levels, and vice versa during the depletion period on clean feed. After prolonged feeding with contaminated feed, the steady state concentrations would reach about the same level (lower panel).
Figure 4. Kinetics of TEQ contamination in eggs (*) and abdominal fat (+, lower line) during the experimental period of the group fed the diet containing 1.85 ng TEQ/kg feed (A) and during prolonged feeding with contaminated feed (B). Hens were fed contaminated feed during the first 56 days of the experiment.

Based on the model parameters found by fitting the model to the data, the concentration-time courses for total TEQ, total dioxin TEQ, non-ortho PCB TEQ and mono-ortho PCB TEQ were calculated for the experiment with highly contaminated feed from Hoogenboom et al. (2002). Note that in this study the relative contribution of dioxins, non-ortho PCBs, and mono-ortho-PCBs to the total TEQ level was quite different from the gross composition of the contamination in the current experiment, being 31, 12 and 58% respectively, as compared to 53, 29 and 18%. In addition, the total TEQ level of about
200ngTEQ/kg feed was 50 times higher than the maximum level in this experiment: 3.95ngTEQ/kg feed. The result of the verification is depicted in Figure 5, showing quite a satisfactory fit of the data.

Figure 5. Contamination levels in egg yolk after administration of ten-fold diluted feed from the Belgian dioxin crisis (Hoogenboom et al. 2002). Hens were fed contaminated feed for 7 days followed by 27 days on clean feed. Model calculations were based on the same parameter values that fitted the total TEQ data of Hoogenbook et al. (2006). Verification shows the total sum TEQ level of all congener groups (upper line, *), mono-ortho-PCB sum TEQs (next upper line, x), dioxin sum TEQs (next lower line, o) and non-ortho-PCB sum TEQs (lower line, +). The steps of the staircase show daily contamination level of eggs.

The model was subsequently used to compare EC Maximum Residue Limits for dioxin TEQ residue levels in feed (0.75ngTEQ/kgfeed) and in eggs (3pgTEQ/gfat). From the former, the corresponding steady-state egg contamination level was calculated to be 13pgTEQ/gfat, to be compared with the MRL value of 3pgTEQ/gfat. On the other hand, maintaining the MRL value of 3pgTEQ/gfat in eggs, feed levels should not exceed 0.17ngTEQ/kgfeed, being about 4 times lower than the MRL value of 0.75ngTEQ/kgfeed. Based on current levels in battery eggs, this seems to be quite achievable.

Furthermore, the model was employed to estimate the fraction of dioxins absorbed from two contaminated soils incorporated in the feed as described by Hoogenboom et al. (2006). Keeping all other parameters at the value of the calibrated model, the fraction absorbed was derived from the data. Absorption from the two soils appeared to be less efficient than absorption from contaminated oil mixed into the feed being respectively 40% for one of the soils and 60% for the other, as compared to about 90% (estimated range: 80–100%) for the oil contaminated feed.

In the current study, indicator PCBs (PCBs 28, 53, 101, 118, 138, 153 and 180) were also spiked to the oil used for preparing the feed. Figure 6 shows the data for total indicator PCB levels in eggs and abdominal fat together with a curve
fit. Parameters had to be slightly modified, since without modification there was a clear overestimation of the egg levels (Table 1).

Figure 6. Levels of indicator PCBs in egg fat (A) and body fat (B) for the 5 different feed levels, and the curve-fit based on the model. Corresponding feed levels from bottom to top were respectively 0.2, 2.3, 4.3, 6.0, 14.2 and 31.7μg/kg feed. Hens were fed contaminated feed during the first 56 days of the experiment.
Table I. Optimized parameters for the model for dioxin-like compounds and indicator PCBs. The parameters \( q_c \) and \( q_r \) represent the transfer from the central compartment to the fat compartment and vice versa, \( y \) and \( k \) the elimination via yolk fat and clearance, \( F_{\text{abs}} \) the absorbed fraction, and \( W_r \) the weight of the fat compartment.

<table>
<thead>
<tr>
<th></th>
<th>( q_c )</th>
<th>( q_r )</th>
<th>( y )</th>
<th>( k )</th>
<th>( F_{\text{abs}} )</th>
<th>( W_r )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dioxin</td>
<td>0.17</td>
<td>0.078</td>
<td>0.043&lt;( y &lt;0.055 )</td>
<td>0&lt;( k &lt;0.011 )</td>
<td>0.78&lt;( F_{\text{abs}} &lt;1 )</td>
<td>230&lt;( W_r &lt;290 )</td>
</tr>
<tr>
<td>TEQ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indicator</td>
<td>0.14</td>
<td>0.046</td>
<td>0.051&lt;( y &lt;0.075 )</td>
<td>0&lt;( k &lt;0.022 )</td>
<td>0.68&lt;( F_{\text{abs}} &lt;1 )</td>
<td>220&lt;( W_r &lt;320 )</td>
</tr>
<tr>
<td>PCBs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notably the reduced value of \( q_r \) shows that the distribution volume of the fat compartment for these indicator PCBs is greater than for dioxins and dioxin-like PCBs, resulting in a greater storage capacity and reduction of residue levels. Corresponding half-lives of the initial and terminal phase are 2.8 days and 55 days respectively, with a ten percent increase in comparison to the values of 2.5 and 50 days for dioxins and dioxin-like PCBs.

Conclusions

- A model was developed for the kinetics of total sum TEQ carry-over of dioxins and dioxin-like PCBs from feed to eggs. The model does not only predict total sum TEQ, but also the results for sum TEQs of separate groups (dioxins and furans, mono-ortho PCBs and non-ortho PCBs). The model was not tested for individual congeners. The model could successfully be applied for data on the kinetics of total and group sum TEQs of contaminated feed with a much higher level of contamination and a quite different contaminant composition.
- Absorption of the sum TEQ of the dioxin-like compounds from feed prepared with contaminated oil is quite efficient, approximately 90%; the main elimination route is by yolk fat excretion. Residues in eggs clearly show bi-phasic kinetics, indicating a fast response after contamination in the order of days followed by a much slower response in the order of months.
- In contrast, residues in abdominal fat did not show bi-phasic kinetics: The short-lasting fast response phase lacks almost completely. Differences in residue levels in eggs and abdominal fat, expressed as pg TEQ/g fat can be attributed to differences in the kinetics of the corresponding compartments. At steady state, after prolonged exposure to contaminated feed, residue levels are expected to be about the same.
- The model was applied to carry-over of dioxins from two soils incorporated in feed to eggs. The range of absorbed fractions from the two soils was still high but lower than the absorption of dioxins from oil incorporated into feed.
- From model calculations, it is evident that EC MRL values for dioxin-derived TEQ levels in laying hens feed and in eggs are not in accordance/compliance. At least a fourfold reduction is required to guarantee egg levels below the MRL. This should be verified experimentally.
References


