RIVM rapport 718201002

Onderbouwing van het Nederlandse derogatieverzoek in het kader van de Europese Nitraatrichtlijn

W.J. Willems, T.V. Vellinga¹, O. Oenema²
J.J. Schröder³, H.G. van der Meer³, B. Fraters
H.F.M. Aarts³

april 2000

¹) Praktijkonderzoek Rundvee, Schapen en Paarden (PR) te Lelystad.
²) Alterra, Wageningen-UR
³) Plant Research International, Wageningen-UR

RIVM, postbus 1, 3720 BA Bilthoven, telefoon 030-274 91 11; fax: 030-274 29 71
Summary

The directive on the protection of waters against pollution caused by nitrates from agricultural sources (Nitrates Directive”; 91/676/EC) aims at reducing water pollution caused or induced by nitrates from these sources and at preventing such further pollution. From 20/12/2002 onwards the amount of nitrogen in the manure applied to the land may not exceed 170 kg/ha. According to Annex III, sub 2b of this Directive, Member States may fix a different amount of nitrogen than stipulated in the standard (derogation). This derogation must be justified on the basis of objective criteria and may not prejudice the environmental objectives of the directive. Annex III describes four different criteria, e.g. long growing seasons, crops with high nitrogen uptake, high net precipitation in the vulnerable zone and soils with an exceptionally high denitrification capacity.

The Dutch government has announced its intention to make a request to the European Commission for a derogation from the manure standard of 170 kg/ha nitrogen (in 2003) according to the EC Nitrates Directive. Arguments for derogation in the case of grassland, a long growing season and a high nitrogen uptake compared to arable crops, will be presented here. Based on numerous field studies the nitrogen uptake by grassland under Dutch soil and climate conditions is about 60-150 kg/ha higher than the nitrogen uptake by arable crops. This is valid for both permanent and temporary grassland.

Manure from livestock can be applied to the soil under controlled conditions as slurry from the stable or as dung and urine, returned directly to the pasture during grazing. Field studies have shown that the level of nitrogen leaching from applied slurry is comparable with leaching as a result of chemical fertiliser application. Nitrogen which is returned to the soil during grazing, however, leads to higher leaching due to the uneven distribution to the pasture in localised patches of dung and urine. The leaching of nitrogen is greater for day and night grazing than daytime and zero grazing alone. The utilisation of manure-derived nitrogen is improved when applied to the soil as slurry.

The Dutch policy on minerals from agricultural sources aims at the reduction of the nitrogen and phosphorus surpluses on farms in compliance with the environmental objectives for soil, groundwater and surface water. With respect to nitrogen, this mineral policy aims at reaching the nitrate concentration of 50 mg/l in shallow groundwater under agricultural land and a reduction of 50% in nitrogen leaching to surface water when compared to 1985-1990 levels.

The level of nitrogen leaching on cattle farms depends on the level of nitrogen supply and the intensity of grazing. The mineral policy regulates the total nitrogen supply to the soil and will limit the grazing by cattle, because farmers are forced to increase the utilisation of nitrogen from manure. Furthermore, when the cattle density is greater and the amount of nitrogen produced by the livestock is fully applied to the grassland on the farm, the system of nitrogen surplus standards leads to a decrease in the amount of chemical fertiliser which can be applied. In this way the objectives of the Directive will be realised.
Here, information from field studies, farm-scale groundwater monitoring and farm-scale model calculations has been used to derive the maximum amount of nitrogen from manure which can be applied to grassland of cattle farms. This amount has to comply with a maximum nitrate concentration of 50 mg/l in the shallow groundwater under grassland. A further condition is that cows are allowed to graze (at least in daytime).

To conclude, the amount of nitrogen with manure on soil with a medium to high soil moisture holding capacity of about 360 kg/ha and on soil with a low soil moisture holding capacity of about 290 kg/ha (310 kg/ha with sprinkler irrigation) can be applied to grassland in accordance with the environmental objectives of the Nitrates Directive. The model computations are in good agreement with the results of field and monitoring data.
Voorwoord

In de brief van 10 september 1999 aan de voorzitter van de Tweede Kamer der Staten-Generaal, hebben de minister van Landbouw, Natuurbeheer en Visserij en de minister van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer de voornemens van de regering voor een integrale aanpak van de mestproblematiek uiteengezet. Daarin is aangekondigd dat aan de Europese Commissie verzocht zal worden voor grasland een hogere stikstofgift met dierlijke mest te mogen toestaan dan de norm die in de Europese Nitraatrichtlijn is opgenomen. De Nitraatrichtlijn schrijft voor dat uiterlijk vanaf 20 december 2002 het gebruik van dierlijke mest op landbouwgrond niet meer mag zijn dan de hoeveelheid mest die 170 kg N bevat. Op basis van bijlage III, onderdeel 2b van deze richtlijn, wordt aangegeven dat lidstaten een andere hoeveelheid dan deze 170 kg N mogen vaststellen. Voorwaarde is daarbij dat de hoeveelheden zodanig worden vastgesteld dat geen afbreuk wordt gedaan aan het bereiken van de doelstellingen van de Europese Nitraatrichtlijn en deze derogatie wordt gemotiveerd.

De directeur Drinkwater, Water, Landbouw van het Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer heeft bij brief van 28 oktober 1999 (kenmerk DWL/1999214311) aan het RIVM gevraagd om, ondersteund door landbouw-instituten, aan te geven welke hoeveelheid stikstof met dierlijke mest op grasland gebracht kan worden, gelet op de genoemde mogelijkheid voor Lidstaten om een andere hoeveelheid vast te stellen dan genoemd in de Nitraatrichtlijn. Door medewerkers van het Praktijkonderzoek Rundvee, Schapen en Paarden (PR), van het Plant Research International en van Alterra (Wageningen-UR) is de daarvoor benodigde kennis ingebracht over stikstofstromen op grasland, zowel op perceelsniveau als op bedrijfsniveau. Het RIVM heeft zich gericht op de gevolgen voor de milieukwaliteit en heeft, in samenspraak met de andere betrokken instellingen, de uiteindelijke rapportage uitgevoerd.
Inhoud

SUMMARY ... 2

SAMENVATTING .. 7

1. INLEIDING ... 9
 1.1 ACHTERGROND .. 9
 1.2 VRAAGSTELLING ... 9

2. UITGANGSPUNten EN WERKWIjZE ... 10
 2.1 UITGANGSPUNten .. 10
 2.2 WERKWIjZE ... 10

3. OBJECTIEVE CRITERIA ... 12
 3.1 VRAAGSTELLING .. 12
 3.2 BASIS VOOR HET DEROGATIEVERZOEK ... 12
 3.3 GRAS IN VERGELIJKING TOT ANDERE GEWASSEN .. 12
 3.4 PERMANENT GRASLAND EN TIJDELIJK GRASLAND .. 14
 3.5 CONCLUSIE .. 15

4. STIKSTOFGIFT EN STIKSTOFUITSPOLELING DOOR HET GEBRUIK VAN DIERLIJKE
 MEST EN KUNSTMEST: VERGELIJKING OP BASIS VAN VELDEXPERIMENTEN 16
 4.1 VRAAGSTELLING .. 16
 4.2 BEMESTING VAN GRASLAND .. 16
 4.3 EFFECT VAN STALMEST OP DE STIKSTOFUITSPOLELING 16
 4.4 EFFECT VAN WIEDEMST OP DE STIKSTOFUITSPOLELING 17
 4.5 CONCLUSIE .. 19

5. STIKSTOFANVOER EN STIKSTOFUITSPOLELING OP BEDIJFSNIVEAU 21
 5.1 VRAAGSTELLING .. 21
 5.2 INLEIDING .. 21
 5.3 STIKSTOFANVOER EN STIKSTOFOVERSCHOT OP EEN GRAASDIERBEDIJF 21
 5.4 GEVOLGD BENADERING ... 23
 5.5 DE MAXIMALE STIKSTOFGIFT UIT DIERLIJKE MEST EN KUNSTMEST IN RELATIE TOT
 DE VEEBEZETTING ... 24
 5.6 DE MAXIMUM STIKSTOFTOEDIENING VIA DIERLIJKE MEST: BEGRENZING DOOR
 NITRAATNORM IN GRONDWATER .. 28
 5.7 DE MAXIMUM STIKSTOFTOEDIENING VIA DIERLIJKE MEST: BEGRENZING DOOR DE
 VERLIESNORM VOOR FOSFAAT ... 30
 5.8 DISCUSSIE EN GEOELDIGHEIDSANALYSE .. 31
 5.9 CONCLUSIE .. 33

6. STIKSTOFOVERSCHOT VAN GRAASDIERBEDIJVEN IN RELATIE TOT NITRAAT IN
 GRONDWATER EN STIKSTOFBELASTING VAN OPPERVLAKTEWATER 35
 6.1 VRAAGSTELLING .. 35
 6.2 VAN STIKSTOFOVERSCHOT NAAR NITRAAT IN GRONDWATER 35
 6.3 VAN STIKSTOFOVERSCHOT NAAR STIKSTOFBELASTING VAN OPPERVLAKTEWATER... 38
 6.4 CONCLUSIE .. 39

7. SYNTHÈSE EN CONCLUSIE ... 41

REFERENTIES ... 44

ANNEX 1. BEWEIDING OP GRAASDIERBEDIJVEN ... 50

ANNEX 2. STIKSTOFSTROMEN OP GRAASDIERBEDIJVEN IN RELATIE TOT
 NITRAATUITSPOLELING ... 56
ANNEX 3. VOORBEELDEN VAN GRAASDIERBEDRIJVEN DIE VOLDoen AAN DE VERLIESNORM EN DIE MEER STIKSTOF VIA DIERLIJKE MEST GEBRUIKEN DAN 170 KG/HA ... 98

ANNEX 4. VERTALING VAN HET STIKSTOFOVERSCHOT VOLGENS MINAS NAAR EEN NITRAATCONCENTRATIE IN HET BOVENSTE GRONDWATER .. 100
Samenvatting

Conclusie
Op basis van de huidige kennis en uitgaande van de Nederlandse mestregelgeving, de systematiek van Minas met de bijbehorende verliesnormen en de prohibitieve heffing voor stikstof, kan een derogatie op grasland worden gemotiveerd van ca. 360 kg/ha op vochthoudende gronden en ca. 290 kg/ha op droge gronden (ca. 310 kg/ha als deze worden beregend). Het is niet nodig om hierbij een onderscheid te maken tussen permanent en tijdelijk grasland. De derogatie dient echter niet te gelden voor gras dat als vang- of volggewas na een akkerbouwgewas wordt geteeld.

Achtergrond
De Europese Nitraatrichtlijn (91/676/EG) heeft tot doel de waterverontreiniging die wordt veroorzaakt of teweeggebracht door nitraten uit agrarische bronnen te verminderen en verdere verontreiniging van dien aard te voorkomen. De richtlijn sertificeert voor dat uiterlijk vanaf 20 december 2002 het gebruik van dierlijke mest per hectare landbouwgrond niet meer mag zijn dan de hoeveelheid mest die 170 kg stikstof bevat. Toepassing van deze norm heeft voor de Nederlandse landbouw grote nadelige gevolgen.

De Nitraatrichtlijn biedt de Lid-staten de mogelijkheid om een andere hoeveelheid dan 170 kg/ha vast te stellen. Voorwaarde is daarbij dat de hoeveelheden zodanig worden vastgesteld dat geen afbreuk wordt gedaan aan het bereiken van de doelstellingen van de Nitraatrichtlijn. Deze zogenaamde derogatie moet worden gemotiveerd. Hiertoe bevat de Nitraatrichtlijn een aantal objectieve criteria. In bijlage III, onderdeel 2b van de richtlijn, worden genoemd gewassen met lange groeiperiodes, gewassen met hoge stikstofopname, regio(s) met een hoge netto-neerslag en gronden met een uitzonderlijk hoog denitrificatievermogen.

In dit rapport is, op basis van de geboden mogelijkheid tot derogatie, nagegaan welke hoeveelheid stikstof met dierlijke mest op het grasland van graasdierbedrijven kan worden gebracht, zonder afbreuk te doen aan de doelstellingen van de Nitraatrichtlijn.

Criteria voor derogatie
Uit veldproeven blijkt dat gras onder Nederlandse bodem- en klimaatomstandigheden langer en meer stikstof opneemt dan andere gewassen. Gras voldoet daarmee aan de objectieve criteria “langer groeiseizoen” en “hoger gewasopname”. Gras neemt ca. 60-150 kg/ha meer stikstof op dan akkerbouwgewassen. Hierdoor is er een basis dat de hoeveelheid stikstof die met dierlijke mest op grasland kan worden gebracht groter kan zijn dan op bouwland. Er is hierbij geen reden om onderscheid te maken tussen permanent grasland (92% van het areaal) en tijdelijk grasland (8% van het areaal).

Welke derogatie is mogelijk zonder overschrijding van de nitraatdoelstelling?
De stikstofgift op grasland mag niet leiden tot te hoge nitraatconcentraties in het bovenste grondwater. Om het acceptabele niveau van dierlijke mest vast te stellen zijn drie benaderingen gekozen: resultaten van proefveldonderzoek, modelberekeningen in de context van het graasdierbedrijf en resultaten van grondwatermonitoring op bedrijfsniveau.
In het eindresultaat zijn deze drie benaderingen verdiscoteerd.
Gebruik van dierlijke mest en kunstmest op proefveldniveau.
Dierlijke mest die op een graasdierbedrijf ontstaat, bestaat uit twee stromen, namelijk
mest die het vee in de stal produceert (stalmest) en mest die tijdens de beweiding
vrijkomt en direct op de bodem komt (weidemest). Het effect van stalmest en van
weidemest op de uitspoeling van nitraat is bij proefvelden altijd apart onderzocht.
Uit proefveldonderzoek blijkt dat als dierlijke mest goed verdeeld wordt toegediend
(stalmest), het gras deze stikstof goed kan benutten en het uitspoelingsrisico
vergelijkbaar is met dat van kunstmest. Op zandgrond die het midden houdt tussen
vochtthoudend en droogtegevoelig is een stikstofgift via dierlijke mest (stalmest) van
ca. 400 kg/ha mogelijk. Weidemest leidt echter tot een grotere uitspoeling omdat het gras de stikstof uit faeces
en urine slechts beperkt kan benutten. Bij grasland op droog zand dat onbeperkt wordt
beweid kan via kunstmest en weidemest eveneens 400 kg/ha worden gebruikt. Hierbij
geldt de restrictie dat de hoeveelheid stikstof via dierlijke mest (weidemest) niet groter
mag zijn dan ca 200 kg/ha.

Stikstoftoediening en nitraatuitspoeling in de context van het graasdierbedrijf.
Voor de berekeningen zijn een aantal uitgangspunten gehanteerd.
De verliesnormen voor stikstof op basis van de Nederlandse mestregelgeving (Minas)
worden gerespecteerd. Verder geldt dat het rundvee moet kunnen weiden. Weidegang
van het vee heeft weliswaar een groot effect op de nitraatuitspoeling, maar zou uit
maatschappelijk oogpunt echter als wenselijk gezien kunnen worden. Voor weidegang
is grasland nodig, daarom zijn de berekeningen uitgevoerd voor situaties met 100 %
grasland. Omdat de mestregelgeving onderscheid maakt tussen droge en vocht-
houdende gronden, is dit ook in de berekeningen gedaan.

Deberekeningengevenvolgrendesresultaten:
- Bij de hier doorgerekende veebezettingen (1-2,8 melkkoe/ha) is de maximale
stikstofgift via stalmest, weidemest en kunstmest voor vochtthoudende gronden
450 kg/ha en 330 kg/ha voor droge gronden.
- Er is sprake van uittusseling tussen stikstof uit dierlijke mest en kunstmest. Een
hogere stikstofgift via dierlijke mest leidt tot een daling van de kunstmestgift. Een
 inefficiënte bedrijfsvoering leidt automatisch tot minder kunstmestaanvoer op het
bedrijf.
- De maximale bijdrage van dierlijke mest (stalmest en weidemest) in de totale
stikstofgift is ca. 360 kg/ha voor vochtthoudende gronden en ca. 290 kg/ha voor
droge gronden (ca. 310 kg/ha indien deze worden beregend).
- Bij deze maximale toediening van stikstof via dierlijke mest blijft de nitraat-
concentratie in het bovenste grondwater bij vochtthoudende gronden beneden de
waarde van 50 mg/l. Voor droge gronden wordt deze waarde net bereikt.

Monitoring van praktijkbedrijven.
Op basis van gegevens van het landelijk meetnet (“mestmeetnet”) wordt bij de
randvoorwaarde van de Nederlandse mestregelgeving (stikstofverliesnorm volgens
Minas) verwacht dat de gemiddelde nitraatconcentratie in het bovenste grondwater op
vochtthoudende en droge zandgronden respectievelijk ca. 45 en ca. 50 mg per liter zal
bedragen.
1. Inleiding

1.1 Achtergrond
De Europese Nitraatrichtlijn (91/676/EG) heeft tot doel:
“De waterverontreiniging die wordt veroorzaakt of teweeggebracht door nitraten uit agrarische bronnen te verminderen en verdere verontreiniging van dien aard te voorkomen”. De lidstaten dienen alle stukken land (kwetsbare zones) aan te wijzen die afwateren op de volgende wateren:
- zoet oppervlaktewater, gebruikt of bestemd voor de winning van drinkwater dat meer dan 50 mg/l nitraat bevat of zou kunnen bevatten als de maatregelen uit de richtlijn achterwege blijven;
- grondwater, dat meer dan 50 mg/l nitraat bevat of zou kunnen bevatten als de maatregelen uit de richtlijn achterwege blijven;
- zoet en zout oppervlaktewater, dat eutroof is of zou kunnen worden als de maatregelen uit de richtlijn achterwege blijven.

Een analyse van de situatie voor deze typen wateren heeft geleid tot de conclusie dat geheel Nederland als kwetsbare zone beschouwd moet worden (Werkgroep aanwijzing, 1994).

Voor zowel het grondwater als het zoete- en zoute oppervlaktewater is de emissie vanuit de landbouw een relevante bron. Om die reden heeft de Nederlandse regering in 1994 aan de Europese Commissie meegedeeld de actieprogramma’s die de richtlijn voorschrijft, op het gehele grondgebied toe te passen.

De Nitraatrichtlijn verplicht de lid-staten verder om actieprogramma’s op te stellen waarin een aantal maatregelen dient te zijn opgenomen met betrekking tot de hoeveelheid, het tijdstip en de wijze van toediening van meststoffen op of in de bodem. Een van deze maatregelen houdt in, dat niet meer stikstof met dierlijke mest op of in de bodem mag worden gebracht dan 170 kg/ha. Deze gebruiksnorm geldt vanaf het jaar 2003 (formeel vanaf 20/12/2002).

1.2 Vraagstelling
Toepassing van de norm van 170 kg/ha zal grote nadelige gevolgen hebben voor de Nederlandse landbouw. De Nitraatrichtlijn biedt de mogelijkheid om een andere hoeveelheid stikstof uit dierlijke mest dan 170 kg per hectare op de bodem te brengen. Deze afwijkende hoeveelheid moet zodanig worden vastgesteld dat geen afbreuk wordt gedaan aan het bereiken van de doelstellingen van de Europese Nitraatrichtlijn en moet worden gemotiveerd aan de hand van objectieve criteria, waarvan de richtlijn er vier noemt. Een dergelijk verzoek tot afwijken wordt derogatie genoemd.

Dit rapport geeft een wetenschappelijke onderbouwing van de mogelijkheden van een derogatieverzoek voor grasland. Uitgangspunt hierbij is, dat geen afbreuk wordt gedaan aan de doelstellingen van de Nitraatrichtlijn.
2. Uitgangspunten en werkwijze

2.1 Uitgangspunten

In de voorliggende rapportage zijn de volgende uitgangspunten gehanteerd:

- Het verzoek tot derogatie heeft betrekking op de stikstofgift met dierlijke mest op grasland. Het grasland in Nederland is vrijwel volledig in gebruik bij graasdierbedrijven;
- In dit rapport is ervan uitgegaan dat bedrijven zich houden aan de verliesnormen voor stikstof zoals verwoord in het beleidsvoornemen van 10/9/99 (LNV 1999a);
- De schaal waarop gekeken wordt, is die van het bedrijf. Aspecten als de gevolgen van de mogelijke derogatie voor de problematiek van de mestoverschotten op regionale/landelijke schaal blijven buiten beschouwing;
- Het accent in dit rapport ligt op de uitspoeling van stikstof naar het bovenste grondwater. De nitraatconcentratie in de bovenste meter van het grondwater van 50 mg/l wordt voor de Nederlandse situatie als maatgevend beschouwd om de doelstelling van de Nitraatrichtlijn aan te toetsen. Het bereiken van deze nitraatconcentratie is ook relevant voor het terugdringen van eutrofiëring van het oppervlaktewater.

2.2 Werkwijze

De aanvraag voor de derogatie kan worden gedaan op basis van nauwkeurig omschreven criteria, zoals genoemd in de richtlijn. Dat wordt gedaan in hoofdstuk 3. Vervolgens wordt via verschillende wegen onderzocht of bij hogere gift van stikstof uit dierlijke mest de doelstelling van de Nitraatrichtlijn niet wordt overschreden. Deze doelstelling is voor de Nederlandse situatie als volgt geoperationaliseerd (LNV, 1999a):

- het bereiken van 50 mg/l nitraat in het bovenste grondwater
- het realiseren van 50% reductie in de stikstofbelasting van het oppervlaktewater, ten opzichte van 1985

De uitspoeling van nitraat uit landbouwgronden is afhankelijk van vele factoren, zoals weersinvloeden, grondsoort, bouwplan en stikstofbemesting. Op weersinvloeden wordt in dit rapport niet nader ingegaan. Voor zover van belang wordt uitgegaan van langjarig gemiddelde omstandigheden. Op bijna alle graasdierbedrijven wordt kunstmeststikstof gebruikt. Daarom is het gebruik van dierlijke mest steeds bekeken in relatie tot het gebruik van kunstmest. Dit is eerst op perceels- en proefveldniveau beschouwd (hoofdstuk 4). Omdat de bedrijfsvoering een grote rol speelt, is het gebruik van dierlijke mest en kunstmest met name vanuit deze invalshoek onderzocht (hoofdstuk 5). In hoofdstuk 6 wordt op basis van uitgebreide monitoring van het grondwater op graasdierbedrijven een vergelijking gemaakt met de berekeningsresultaten van hoofdstuk 5.

Hoofdstuk 7 bevat een synthese van de bevindingen en de conclusies.

Bij de rapportage is gebruik gemaakt van:

- onderzoeksgegevens over de stikstofopname van gras en akkerbouwgewassen afkomstig van proefvelden en praktijkbedrijven;
- onderzoeksgegevens over stikstofbalansen en over de efficiëntie van het stikstofgebruik afkomstig van proefvelden, proefbedrijven en praktijkbedrijven;
- berekeningen met behulp van modellen van Plant Research International en PR;
- meetgegevens over nitraatuitspoeling op proefvelden, proefbedrijven en praktijkbedrijven van Plant Research International (voormalig AB-DLO), Alterra (voormalig SC-DLO) en LEI welke deel uitmaken van het Wageningen Universiteit en Research Centre, het Praktijkonderzoek Rundvee, Schapen en Paarden (PR) en RIVM.
3. Objectieve criteria

3.1 Vraagstelling

Kan op grond van de in de Nitraatrichtlijn genoemde objectieve criteria, voor grasland een grotere hoeveelheid dierlijke mest worden voorgesteld dan de in de Nitraatrichtlijn genoemde maximale stikstofhoeveelheid van 170 kg per hectare per 1-1-2003?

3.2 Basis voor het derogatieverzoek

De Nitraatrichtlijn noemt in Bijlage III (artikel 2, sub b), een aantal objectieve criteria op grond waarvan een lid-staat andere hoeveelheden stikstof met dierlijke mest op de bodem kan toestaan dan de genoemde 170 kg/ha. Deze zijn:
- lange groeiperiodes;
- gewassen met hoge stikstofopname;
- hoge netto neerslag in de kwetsbare zone;
- bodems met een uitzonderlijk hoog denitrificatiesoortgelegen.

Het Nederlandse derogatieverzoek kan worden gebaseerd op de twee criteria, ‘lange groeiperiodes’ en ‘gewassen met een hoge stikstofopname’. In Nederland is bij grasland, landelijk gezien, geen sprake van een hoge netto neerslag en is eveneens geen sprake van een uitzonderlijk hoog denitrificatievermogen. Wel is in een deel van het land (grasland op veengronden) de denitrificatie uitzonderlijk hoog te noemen.

3.3 Gras in vergelijking tot andere gewassen

De periode waarin gras in Nederland stikstof opneemt, is weergegeven in figuur 1. Hierbij is onderscheid gemaakt in gras op droge gronden (ca. 10% van totale areaal grasland zal als zodenag worden aangewezen) en gras op vochtzame gronden. De figuur toont de cumulatieve stikstofopname in het groeiseizoen (in de oogstbare delen van de gewassen) van gras, wintertarwe en snijmaïs, gebaseerd op stikstofgebonden en bruto-opbrengst als vermeld in tabel 1. Snijmaïs is relevant omdat het een belangrijk voedergewas is voor rundvee. Tabel 1 bevat ook gegevens over de stikstofopname van aardappelen en suikerbieten.

De stikstofopname geldt bij een stikstofbepaling overeenkomend met het niveau dat past bij de voorgenomen verliesnormen (zie pag 22, tabel 2). De verschillen tussen de gewassen vormen een illustratie van de verschillen in stikstofopname: gras heeft een veel hogere stikstofopname en een veel langere groeiperiode dan maïs en wintertarwe.

Tabel 1. Stikstofopname, bruto-opbrengst en stikstofopname van gras en enkele belangrijke akkerbouwwegassen. Het verloop van de stikstofopname door gras, wintertarwe en snijmaïs is weergegeven in figuur 1.

<table>
<thead>
<tr>
<th>Gewas</th>
<th>N-gehalte (%):</th>
<th>Bruto opbrengst (ton/ha)</th>
<th>N- opname (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wintertarwe</td>
<td>2,2 (korrel); 0,55 (stro + kaf)</td>
<td>8</td>
<td>200 (160: korrel; 40: stro + kaf)</td>
</tr>
<tr>
<td>aardappelen</td>
<td>3,3</td>
<td>50 (knol)</td>
<td>210 (165 knol; 45 loof, wortels)</td>
</tr>
<tr>
<td>suikerbieten</td>
<td>1</td>
<td>60 (biet)</td>
<td>185 (60 biét; 125 loof, wortels)</td>
</tr>
<tr>
<td>snijmaïs</td>
<td>1,33</td>
<td>13,5</td>
<td>180</td>
</tr>
<tr>
<td>gras, vochtzeggend</td>
<td>3,0</td>
<td>11,9</td>
<td>356</td>
</tr>
<tr>
<td>gras, droog</td>
<td>3,1</td>
<td>8,6</td>
<td>265</td>
</tr>
</tbody>
</table>
N-opname in oogstbare delen

Figuur 1. Hoogte en duur van de stikstofopname door gras, wintertarwe en snijmaïs onder Nederlandse omstandigheden. Voor grasland is uitgegaan van gronden met een stikstofleverend vermogen van 140 kg/ha (vochthoudende gronden) en 105 kg/ha (droge gronden). De stikstofbemesting is in overeenstemming met het niveau dat op grond van de mineralenregelgeving in 2003 mogelijk is. (wintertarwe: 200 kg/ha; snijmaïs: 170 kg/ha; gras, vochthoudend: 250 kg/ha; gras, droog: 170 kg/ha).

De groeiperiode van gras is onder Nederlandse bodem- en klimaatomstandigheden lang vergeleken met die van andere gewassen. De stikstofopname loopt van ca. 1 februari tot 1 november. Wintertarwe neemt stikstof op tussen 1 maart en 1 augustus. Voor snijmaïs is de periode van opname tussen begin mei en medio augustus.

Bovendien is gras in Nederland een gewas dat het gehele jaar de bodem bedekt.

De capaciteit van gras om stikstof op te nemen is eveneens groter dan van akkerbouwgewassen. Dit komt doordat de bovengrondse delen van gras stikstofrijk zijn en het gras meerdere malen per jaar wordt geoogst. Bij een stikstofgift van 250 kg/ha op vochthoudende gronden als werkzame stikstof in het jaar van toediening, is de brute stikstofopname door het gras ongeveer 350 kg. Op de droge gronden is bij een totale werkzame stikstofgift van 170 kg per ha de brute stikstofopname ruim 260 kg N. Dat de stikstofopname van gras hoger is dan de gift (uitgedrukt als werkzame stikstof) is het gevolg van het stikstofleverend vermogen van de bodem. Hiermee wordt bedoeld de nalevering van stikstof uit stoppels, wortels en oogstresten, uit weidemest
en uit organisch gebonden stikstof afkomstig van dierlijke mest die in voorgaande seizoenen is toegediend. Bij de in figuur 1 gegeven stikstofopname van gras is uitgegaan van een stikstofleverend vermogen van de bodem van 140 kg/ha voor vochtbehangende gronden en 105 kg/ha voor droge gronden, waar 20 % opbrengstderving optreedt door vochtgebrek (Vellinga & André, 1999, Werkgroep HELP, 1987). Omdat op de droge gronden het effect van bemesting op de grasopbrengst geringer zal zijn en de toegestane stikstofoverschotten lager zijn, is de bemesting lager dan op de vochtbehangende gronden.

De stikstofopname door gras is op basis van de in figuur 1 en tabel 1 gepresenteerde gegevens ca. 60-150 kg/ha hoger dan die van akkerbouwgewassen.

De derogatie is echter niet direct af te leiden uit dit verschil in stikstofopname tussen akkerbouwgewassen en gras. Het verband tussen stikstofbemesting en uitspoeling is voor gras en akkerbouwgewassen niet hetzelfde. Dit wordt met name veroorzaakt door een verschil in gewasbedekking gedurende het jaar en de invloed hiervan op het gedrag van stikstof in de bodem.

3.4 Permanent grasland en tijdelijk grasland

Verhouding tijdelijk en permanent grasland
In de landbouwstatistiek van EUROSTAT wordt onderscheid gemaakt tussen permanent en tijdelijk grasland. In Nederland bestaat ca 92% (952.000 ha) van het graslandareaal uit permanent grasland en ca 8% (80.000 ha) uit tijdelijk grasland. Als criterium voor permanent grasland geldt grasland dat 5 jaar of meer als zodanig in gebruik is (EU, 1999). Het tijdelijk grasland is jonger dan 5 jaar en ligt in veel gevallen in een rotatie met akkerbouwgewassen of voedergewassen.

Omdat ook het permanent grasland een deel wordt geploegd en opnieuw ingezaaïd (jaarlijks ongeveer 6 % van de oppervlakte (CBS, 1997; Anonymus, 2000) bestaat het permanent grasland deels uit jonger grasland.

Grasopbrengst op tijdelijk en permanent grasland
De aanvraag in hoofdstuk 3 is onderbouwd met proefresultaten van permanent grasland dat ouder is dan 5 jaren. Onderzoek in het Verenigd Koninkrijk (Hopkins et al. 1990, 1995) en in Nederland (Luten, 1984) geeft aan dat de grasproductie van grasland na herinzaai gelijkblijft of een lichte toename vertoont, bij gelijkblijvende groeistemdenheden.

Vastlegging van organische stof onder grasland

Het scheuren van grasland om vervolgens weer direct gras in te zaaien leidt slechts in één enkele winter tot een verhoogde uitspoeling van nitraat (Ernst en Berendonk, 1991; van Dijk, 1997).
Gras als vanggewas

De teelt van gras in de herfst en winter na een akkerbouw- of voedergewas is bedoeld als een vanggewas om de stikstof op te nemen die anders via uitspoeling verloren gaat. Het gras neemt de achtergebleven stikstof in de bodem op na de teelt van het akkerbouw- of voedergewas. Bemesting van dit vanggewas met dierlijke mest en kunstmest is niet zinvol, omdat dit ertoe kan leiden dat er juist meer stikstof in de bodem achterblijft.

Scheuren van grasland.

Resumé

Jong tijdelijk grasland kan evenveel stikstof opnemen als permanent, ouder grasland. Door de sterkere stikstofvastlegging in de organische stof onder jong grasland is de nitraatuitspoeling minder. De argumenten van een hogere stikstofopname en een langer groeiseizoen gelden derhalve ook voor tijdelijk grasland.

Uitdrukkelijk wordt gesteld dat deze argumenten niet gelden voor grasland als vanggewas

3.5 Conclusie

Op grond van de objectieve criteria ‘lange groeiperiodes’ en ‘gewassen met hoge stikstofopname’ is er een gerede basis om op grasland meer stikstof toe te dienen dan op bouwland. De stikstofopname door gras is ca. 60-150 kg/ha hoger dan die van de belangrijkste akkerbouwgewassen in Nederland. Dit is het gecombineerde effect van een 2 - 4 maanden langer groeiseizoen en een hoger stikstofgehalte van het geoogste gras.

Deze conclusie geldt niet alleen voor permanent, oud grasland maar ook voor tijdelijk, jong grasland, uitgezonderd grasland dat als vanggewas na een akkerbouw- of voedergewas wordt ingezaaaid.

In de volgende hoofdstukken zal worden uitgewerkt hoeveel stikstof er met dierlijke mest op grasland kan worden toegediend, zonder afbreuk te doen aan de doelstellingen van de Nitraatrictlijn.
4. Stikstofgift en stikstofuitspoeling door het gebruik van dierlijke mest en kunstmest: vergelijking op basis van veldexperimenten

4.1 Vraagstelling
Is er verschil in effect tussen dierlijke mest en kunstmest op de stikstofuitspoeling naar het grondwater?

4.2 Bemesting van grasland
Op graasdierbedrijven is dierlijke mest een belangrijke bron van stikstof voor gras en voedergewassen. De mate waarin het gras de stikstof uit dierlijke mest kan benutten, is afhankelijk van de vorm waarin het op de bodem komt. Stikstof uit dierlijke mest uit de stal die kort voor of in het groeiseizoen wordt toegediend wordt goed tot zeer goed benut (Van der Meer et al., 1987). Stikstof uit dierlijke mest van weidend vee wordt matig tot slecht benut (Van der Meer, 1991).¹ De maximale hoeveelheid stikstof die volgens de Nitraatrichtlijn met dierlijke mest op grasland mag worden toegediend (170 kg/ha in 2003), heeft zowel betrekking op stalmest als op weidemest. De belasting van het grondwater met nitraat is het gevolg van de uitspoeling van stikstof die niet door het gewas is benut en die niet als ammoniak vervluchtigt of door denitrificatie uit de bodem verdwijnt en/of vastgelegd wordt in de bodem. Deze stikstof kan afkomstig zijn van kunstmest, dierlijke mest, gewasresten of uit de bodem zelf door mineralisatie van organische stof.
In dit hoofdstuk zal op basis van resultaten van onderzoek aan proefvelden worden ingegaan op het effect van het gebruik van dierlijke mest op de nitraatconcentratie van het bovenste grondwater bij zand- en kleigrond². In hoofdstuk 6 zal nader worden ingegaan op de effecten op het oppervlaktewater.

4.3 Effect van stalmest op de stikstofuitspoeling
Veldexperimenten naar de stikstofuitspoeling op gemaaid grasland zijn uitgevoerd met verschillende combinaties van dierlijke mest (stalmest) en kunstmest. De dierlijke mest is emissie-arm aangewend (mestinjectie i.v.m. ammoniakemissie). Het effect van het afzonderlijk gebruik van dierlijke mest en van kunstmest zowel als het gecombineerde gebruik daarvan, wordt geïllustreerd in figuur 2. Hier is de relatie tussen de stikstoffinemesting en de stikstofuitspoeling weergegeven, gebaseerd op een vijfjarig veldexperiment bij grasland op een vochthoudende zandgrond in Ruurlo (Gelderland) (Wadman en Sluijsmans, 1992).

Uit de meetgegevens, die in figuur 2 zijn samengevat, blijkt dat de uitspoeling van nitraat bij gemaaid grasland veel meer bepaald wordt door de hoogte van de stikstofgift dan door de soort mest waarmee de stikstof wordt toegediend.

¹ dierlijke mest die in de stal wordt geproduceerd en vervolgens op het land wordt uitgereden, wordt hierna stalmest genoemd. Mest en urine die het vee in de weide produceert, wordt hierna met weidemest aangeduid.
² De verdeling van het areaal grasland in Nederland over de grondsoorten is als volgt: 44% komt voor op zandgronden, 34% is gelegen op kleigronden en 22% bevindt zich op veengrond.
Figuur 2. Invloed van de toediening van stikstof met dierlijke mest (stalmest) via injectie in het voorjaar (DM), kunstmest (KM) en de combinatie van dierlijke mest (stalmest) en kunstmest (DM+KM) op de nitraatconcentratie onder gemaaid grasland op zand met Gt V en V* (PR/DLO proefveld Ruurlo; gemiddelde waarde voor de periode 1980-1985; data uit: van Drecht et al., 1991).

Bij een stikstofgift met dierlijke mest van ca. 400 kg/ha werd de nitraatnorm van 50 mg/l in het bovenste grondwater bereikt.
Van droge zandgronden zijn deze gegevens niet bekend. Het is echter te verwachten dat de stikstofopname door het gras lager is, omdat de grasgroei wordt geremd door vochttekorten. Bij een gelijke stikstofgift zijn de nitraatconcentraties in het bovenste grondwater op droge gronden hoger dan op vochthoudende gronden.

4.4 Effect van weidemest op de stikstofuitspoeling

Het effect van weidemest op de nitraatconcentratie in het bovenste grondwater wordt geïllustreerd met de figuren 3 en 4. Het betreft situaties waarin uitsluitend beweid werd (onbeperkt weiden). Figuur 3 laat het verband zien tussen de totale stikstofgift op beweid grasland en de nitraatconcentratie in het bovenste grondwater op zandgrond en kleigrond, gemeten aan drainwater. Deze gift bestond uit kunstmest en weidemest (urine en faeces). Deze figuur geeft aan dat een totale stikstofbelasting van ca. 400 kg/ha de nitraatconcentratie van 50 mg/l in het bovenste grondwater wordt bereikt (hier als drainwater gemeten).
Figuur 3. Nitraatconcentratie in drainwater van beeid grasland op zandgrond (Meenthoewe; Gt VI) en op kleigrond (Minderhoudhoeve; Gt IV) als functie van de totale gift van stikstof via weidemest en kunstmest (data uit: van Drecht et al., 1991).

Figuur 3 laat ook zien dat de uitspoeling van stikstof bij kleigronden duidelijk lager is dan bij zandgronden. Omdat de weidemest bij de bemesting van grasland als niet-werkzaam wordt beschouwd, zijn in figuur 4 de gemeten nitraatconcentraties van figuur 3 weergegeven als functie van de stikstofgift via kunstmest.

Figuur 4. Nitraatconcentratie in drainwater van beeid grasland op zandgrond (Meenthoewe; Gt VI) en op kleigrond (Minderhoudhoeve; Gt IV) als functie van de stikstofgift via kunstmest (data uit: van Drecht et al., 1991).
Bij de hier toegepaste beweiding op deze matig droge zandgrond zou de nitraatconcentratie van 50 mg/l in het drainwater zijn bereikt bij een kunstmestgift van ca. 200 kg/ha (na extrapolatie). De hier bijbehorende stikstoftoediening via weidemest is eveneens ca. 200 kg/ha. Een dergelijke totale stikstofgift via weidemest én kunstmest van ca. 400 kg/ha voor een drogere (diep ontwaterde) zandgrond, waarbij de nitraatconcentratie van 50 mg/l werd bereikt, is ook berekend door Van der Meer en Meeuwissen (1989; zie ook annex 1). Voor de kleigrond in de figuren 3 en 4 werd bij een stikstoftoediening met kunstmest van ca. 550 kg/ha en een stikstoftoediening van ca. 350 kg/ha via weidemest, de nitraat-concentratie van 50 mg/l bereikt.

Omdat weidemest slecht verdeeld op het gras gedeponeerd wordt, is de benutting van de aangevoerde stikstof door het gras slechts gering. Vooral de urine die in de loop van het weideseizoen op het grasland wordt gedeponeerd draagt sterk bij aan de uitspoeling van nitraat. (Van der Putten en Vellinga, 1996; zie ook annex 1). In de landbouwpрактик wordt de door het weidend vee aangevoerde stikstof niet meegekend bij het bepalen van de hoeveelheid stikstof die moet worden toegediend om voldoende grasproductie te realiseren. Dat betekent dat de stikstofbijdrage van het gras volledig door stalmest en/of kunstmest wordt gedekt.

Naarmate het bemestingsniveau hoger is, neemt de uitspoeling als gevolg van de beweiding toe. Dit geldt vooral bij kunstmestgiften van meer dan 150 à 200 kg/ha (Loonen en Bach-de Wit, 1996; zie ook annex 1). Vergeleken met gemaaide grasland is bij een gelijke stikstofgift via kunstmest de uitspoeling van grasland, dat onbeperkt beweid wordt, een factor 2-3 hoger. Vergelijkbare resultaten zijn ook bekend uit onderzoek elders in Europa. Door Ryden et al. is in 1984 al gewezen op de grote invloed van beweiding op de uitspoeling van nitraat. Later onderzoek in Engeland (Macduff et al., 1990), in Duitsland (Benke, 1992) en in Frankrijk (Simon et al., 1997) is hiermee in overeenstemming.

Voor een verdere toelichting op beweiding wordt verwezen naar annex 1.

4.5 Conclusie

Wanneer dierlijke mest goed verdeeld wordt over het grasland en tijdens het groeiseizoen wordt toegediend, is het risico van nitraatuitspoeling naar het grondwater niet groter dan bij de toediening van kunstmest. Het gras kan de stikstof uit stalmest goed benutten. Uit de beschreven waarnemingen aan gemaaide grasland op vochthoudende zandgrond (Ruurlo-onderzoek) blijkt, dat bij een stikstofgift via stalmest van ca. 400 kg/ha de nitraatconcentratie van 50 mg/l in het bovenste grondwater werd bereikt. De maximaal toelaatbare stikstoftoediening met stalmest naar gemaaide grasland op droge gronden is naar verwachting lager.

Uit de resultaten van het proefveldonderzoek aan beweid grasland blijkt dat ook hier de totale stikstofgift de stikstofuitspoeling naar het grondwater bepaalt. Omdat de stikstof uit weidemest slecht door het gras wordt benut, moet de stikstofbehoefte van het gras vrijwel geheel via kunstmest (en/of stalmest) worden gedekt. Deze weidemest draagt in belangrijke mate bij aan de uitspoeling.

Bij gras op droge zandgrond, dat onbeperkt wordt beweid, wordt bij een stikstoftoediening van ca. 200 kg/ha via kunstmest de nitraatconcentratie van 50 mg/l in het bovenste grondwater bereikt. De hierbij behorende stikstofgift via dierlijke mest bedraagt ca. 200 kg/ha.
Stikstof die via weidemest op grasland komt, spoelt veel sterker uit dan een gelijke hoeveelheid stikstof uit stalmest. Om de uitspoeling van stikstof via de toediening met dierlijke mest te beperken, dient deze zoveel mogelijk in de vorm van stalmest toegediend te worden. Uit het veldonderzoek blijkt verder dat de uitspoeling van beweid grasland op zand groter is dan van beweid grasland op kleigrond.
5. Stikstofaanvoer en stikstofuitspoeling op bedrijfsniveau

5.1 Vraagstelling

Hoeveel stikstof uit dierlijke mest kan op het grasland van een graasdierbedrijf worden gebruikt, zonder de nitraatconcentratie van 50 mg/l in het bovenste groundwater te overschrijden?

5.2 Inleiding

In de in hoofdstuk 4 beschreven proefveldonderzoeken is uitgegaan van grasland dat of uitsluitend wordt beweid of alleen wordt gemaaid. Dit geeft echter een beperkt beeld van de werkelijkheid. Op graasdierbedrijven wordt het grasland namelijk zowel beweid als gemaaid, waarbij de stikstoftoevoer naar grasland in de praktijk plaatsvindt door een combinatie van weidemest, stalmest en kunstmest. Dergelijke combinaties worden in dit hoofdstuk nader toegelicht door de stikstofstromen op bedrijfsniveau te beschouwen.

In dit hoofdstuk wordt op bedrijfsniveau nagegaan welke stikstofgiften op grasland mogelijk zijn met dierlijke mest en/of kunstmest onder de voorwaarde dat de nitraatconcentratie in het bovenste groundwater niet hoger wordt dan 50 mg nitraat per liter. Voorts wordt nagegaan wat het effect is van de voorgenomen regulering van het fosfaatoverschot.

5.3 Stikstofaanvoer en stikstofoverschot op een graasdierbedrijf

De grasproductie op een graasdierbedrijf dient voor de voeding van het vee. De productie van eigen gras is goedkoper dan voeraankoop zolang de kosten van bemesting en oogsten van gras lager zijn dan die van aangekocht voer. De bemestingsadviezen zijn tot nu toe afgesloten op dat uitgangspunt (Unwin en Vellinga, 1994). Voor de bemesting van het grasland gebruikt de boer de dierlijke mest van het eigen vee en aangekochte kunstmest. De dierlijke mest is een interne post, kunstmest moet van buiten het bedrijf aangevoerd worden en is een externe post.

Dit is weergegeven in de vereenvoudigde mineralenbalans in figuur 5. Stikstofaanvoer via aangekocht voer is ook een belangrijke aanvoerpost op de mineralenbalans. De afvoer van stikstof vindt voornamelijk plaats via de afvoer van melk. Daarnaast kan ook afvoer plaatsvinden via vee en via ruwvoer en dierlijke mest. Het verschil tussen de aanvoer en afvoer is het overschot op de mineralenbalans. Deze stikstof komt via het dier weer in de mest terecht. Daarmee werkt de mineralenwetgeving ook indirect door op de dierlijke mest.

De Nitraattrend richt zich op de balans tussen stikstofbehoeften van gewassen en de stikstofvoorziening via stikstoflevering uit de bodem en de toevoeging van stikstof uit bemesting via dierlijke mest en kunstmest. De Nitraattrend maakt wat betreft de toevoer naar de bodem geen onderscheid tussen een interne post op de bedrijfsbalans (de dierlijke mest) en een externe post (de kunstmest).
Het stikstofoverschot bestaat uit de volgende drie componenten:
1. de stikstof die op een bedrijf vrijkomt in de stal en bij de mestopslag en tijdens het toedienen van mest, en in de vorm van ammoniak (NH₃) naar de atmosfeer ontwikkelt;
2. de stikstof die uiteindelijk, na denitrificatie, in de atmosfeer terechtkomt in de vorm van elementaire stikstof (N₂); deels ontstaat daarbij ook lachgas (N₂O), een broeikasgas;
3. de stikstof die voornamelijk als nitraat (NO₃) na uitspoeling uit de wortelzone in grond- en oppervlaktewater terechtkomt.

De onderlinge verhouding van deze componenten is variabel en afhankelijk van de weersomstandigheden, grondsoort, de vochttoestand, het type stal, en bedrijfsovervoering w.o. de wijze van mesttoediening.

De Nitraatrichtlijn richt zich specifiek op de laatste component van het balansoverschot van een bedrijf.

Hoewel er duidelijke overeenkomsten zijn tussen de benadering in de Nederlandse mineralenwetgeving en die van de Nitraatrichtlijn, zijn er ook accentverschillen. De mineralenwetgeving regelt expliciet de stikstofaanvoer van kunstmest en dierlijke mest van buiten het bedrijf en impliciet de stikstoftoediening via dierlijke mest van het eigen bedrijf. De Nitraatrichtlijn regelt expliciet het gebruik van stikstof via zowel dierlijke mest als kunstmest.

Aan de hand van berekeningen wordt duidelijk gemaakt hoe de mineralenwetgeving het gebruik van stikstof via dierlijke mest en kunstmest op grasland reguleert. Vervolgens wordt gekeken of die totale gift niet te hoog is en niet tot te hoge nitraatconcentraties in het bovenste grondwater leidt.

Voordat de resultaten van de berekeningen worden gepresenteerd, zal eerst de gevolgde aanpak worden toegelicht, alsmede de randvoorwaarden die daarbij zijn gehanteerd.
Regulering van het stikstofoverschot

In Nederland is het stikstofoverschot van een landbouwbedrijf door middel van het systeem van verliesnormen aan een maximum gebonden, op basis van de Meststoffenwet (LNV, 1997). In het beleidsvoornemen van 10/9/99 (LNV, 1999a) is aangekondigd dat de normen voor 2008/2010 reeds met ingang van het jaar 2003 gaan gelden. Voorts gelden voor droge gronden lagere verliesnormen. De stikstofverliesnorm voor grasland is 180 kg/ha. Voor grasland op droge gronden geldt een verliesnorm van 140 kg/ha. Voor maïsland is de stikstofverliesnorm 100 kg/ha, respectievelijk 60 kg/ha (tabel 2).

Tabel 2. Verliesnormen (heffingvrij overschotten) voor stikstof en fosfaat voor grasland en bouwland (inclusief snijmaïs) in 2003 volgens het beleidsvoornemen (LNV, 1999a).

<table>
<thead>
<tr>
<th>Gewas</th>
<th>Verliesnormen voor stikstof en fosfaat in kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generiek</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Gras bouwland/snijmaïs</td>
<td>180</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

Indien de stikstof- en fosfaatoverschotten van een bedrijf de verliesnormen van tabel 2 overschrijden, moet een heffing worden betaald. Volgens het beleidsvoornemen van 10/9/99 (LNV, 1999a) wordt de heffing bij overschrijding van de verliesnorm verhoogd van f 1,50 per kg stikstof naar f 5,00 per kg. Voor fosfaat wordt de heffing voor iedere kilogram boven de verliesnorm f 20,-.

5.4 Gevolgde benadering

Het tempo waarin de bedrijven hun mineralenoverschotten moeten verlagen, ligt hoog. Er zijn thans enkele graasdierbedrijven bekend waarvoor geldt dat ze nu al voldoen aan de verliesnormen van tabel 2 voor 2003 en die zich wat betreft het stikstofgebruik via dierlijke mest, bevinden in het traject tussen 170 en ca. 400 kg/ha (= gangbare veebezettingen) en waar tevens de grondwaterkwaliteit wordt gemeten (bedrijfsmonitoring). In annex 3 worden voorbeelden van dergelijke bedrijven gegeven.

Voor de analyse van de milieugevolgen van het gebruik van dierlijke mest wordt hier gebruik gemaakt van modellen waarmee de stikstofstroom op bedrijfsniveau beschreven wordt. Dit, om een goed en representatief beeld te krijgen van de situatie in 2003 voor een breed scala van bedrijven en grondsoorten.

De resultaten van grondwatermonitoring op bedrijfsniveau zijn gebruikt om de resultaten van het model te toetsen (zie hoofdstuk 6).

In dit hoofdstuk worden de uitkomsten gegeven welke zijn berekend met het model BBPR (BedrijfsBegrotings Programma Rundveehouderij; Alem en Van Scheppingen, 1993 en Schreuder et al., 1995, Vellinga et al., 1997). Het BBPR is een rekenprogramma waarmee in de praktijk realiseerbare bedrijven worden gesimuleerd.
Het model wordt gebruikt door voorlichtingsdiensten, boekhoudkantoren en banken. In de praktijk blijkt dat de technische resultaten van het BBPR bij goed management realiseerbaar zijn (De Haan, 1998).

Bij de modelberekeningen is uitgegaan van:
- graasdierbedrijven die volledig uit grasland bestaan. Dat is voor een aantal gebieden in Nederland geen representatieve situatie. Daar zijn twee redenen voor. Ten eerste zijn de stikstofverliesnormen voor grasland hoger dan voor bouwland. Er wordt dus meer stikstof aangevoerd per hectare. Ten tweede zijn op een bedrijf met alleen grasland de beweidingsmogelijkheden groter dan op bedrijven waar een deel van het land wordt beteëld met voedergewassen. Daardoor kunnen de negatieve effecten van beweiding sterker in beeld worden gebracht (zie hiervoor ook Annex 1). Uit oogpunt van stikstofbelasting kan deze keuze dus worden beschouwd als een “worst case” situatie.
- graasdierbedrijven die geen dierlijke mest afvoeren;
- de randvoorwaarden die het mestbeleid aan het stikstofoverschot stelt (het systeem van verliesnormen; zie tabel 2);
- extreem in bodemeigenschappen: een bedrijf met nauwelijks droogteschade (zandgrond met een dun humeusdek met een Gt IV) om het maximale gebruik van stikstof per hectare op te zoeken. Het andere extreem is een bedrijf op extreem droge grond (zandgronden met een dun humeusdek met een grondwatertrap VII) om een zeer gevoelige situatie in beeld te brengen.

Bedrijfseconomische gevolgen zijn hierbij buiten beschouwing gebleven. Een nadere toelichting op de modelberekeningen en de overige gehanteerde uitgangspunten staat in annex 2.

5.5 De maximale stikstofgift uit dierlijke mest en kunstmest in relatie tot de veebezetting

Dierlijke mest
De totale hoeveelheid stikstof die met dierlijke mest door de veestapel geproduceerd wordt, is afhankelijk van de veebezetting: hoe meer vee, hoe groter de stikstofproductie met dierlijke mest. Als uitgegaan zou worden van een vaste norm per dier, dan is er een rechtlijnig verband tussen veebezetting en stikstofproductie. Dit is de rechte lijn in figuur 6, de forfaitaire stikstofuitscheiding, zoals deze is vastgesteld door Tamminga et al. (2000). Hierop is een aftrek van 10% toegepast in verband met de emissie van ammoniak naar de lucht.
Figuur 6. Verband tussen de veebezetten en de stikstofexcretie per hectare (na aftrek van 10% als ammoniakemissie uit stal en opslag) op vochtoude, droge en beregende droge gronden. Tevens is de forfaitaire stikstofexcretie gegeven, ook hier is 10% aftrek gepleegd voor de ammoniakemissie. Een melkkoë is inclusief het bijbehorend jongvee (0,65 stuks)

Het verband tussen de veebezetten en de stikstof in dierlijke mest is echter niet steeds rechtlijnig, maar gaat op een bepaald moment afbuigen. De stikstofproductie met dierlijke mest stijgt minder snel dan enkel op grond van het aantal dieren verwacht zou worden. Dat heeft de volgende redenen:

- bij meer vee stijgt de vraag naar ruwvoer. Deze wordt allereerst opgevangen door de eigen ruwvoerproductie op te voeren. Dit betekent dat extra kunstmest moet worden aangekocht. In die fase stijgt de stikstof uit dierlijke mest nog lineair;
- op een gegeven moment kan er niet genoeg eigen ruwvoer voor het vee worden geproduceerd. Het effect van bemesting is zo klein geworden dat dit niet meer lonend is, of het totale stikstofoverschot op het bedrijf is te hoog. Dan wordt er extern ruwvoer (snijmaïs) aangekocht. Dat ruwvoer is eiwitarm in vergelijking met het eigen voer. Het stikstofgehalte van het voortantsoen daalt. Omdat de stikstofvestiging in melk en vlees niet daalt, neemt dus de stikstof in dierlijke mest af per dier. Per saldo zal de totale stikstofproductie via dierlijke mest per hectare nog wel stijgen. In dat traject buigt de lijn van de berekende stikstofexcretie af van de forfaitaire lijn.
- op droge gronden zal bij een gelijke veebezetten eerder ruwvoer van buiten het bedrijf moeten worden aangekocht dan bij de meer productieve vochtoude gronden het geval is. Dit voer is stikstofarm, waardoor de lijn in figuur 6 bij droge gronden eerder afbuigt.
Aanvulling met kunstmest.
Bij hogere veebezettingen loopt de totale toever van dierlijke mest en kunstmest ineens vlak. Dat is geen gevolg van het bereiken van het bedrijfseconomisch optimum, maar van het bereiken van het maximaal toelaatbare stikstofoverschot. De stikstofaanvoer van ruwvoer, krachtvoer en kunstmest mag dan niet verder stijgen.
Om het vee toch te kunnen voeren, wordt er meer eiwitarm ruwvoer aangekocht en wordt de kunstmestaankoo verlaagd. Door de hogere veebezetting is onbeperkt weiden technisch niet meer mogelijk. Er wordt overgegaan op beperkt weiden met bijvoeding van ruwvoer in de weideperiode. Daardoor neemt de hoeveelheid weidemest af en stijgt de hoeveelheid stalmest.
Op vochthoudende gronden wordt de maximale gift van stikstof op deze wijze beperkt tot 450 kg/ha per jaar op het grasland.

Op droge gronden is de grasproductie lager dan op vochthoudende gronden en is het toegestane stikstofoverschot kleiner. Dat heeft tot gevolg dat de voeraankoop op droge gronden eerder moet plaatsvinden. De stikstofexcretie van het vee buigt eerder af van de forfaitaire lijn (zie figuur 6). De totale stikstofgift via dierlijke mest en kunstmest wordt eerder en op een veel lager niveau afgevlakt, namelijk op ongeveer 330 kg N per ha grasland (figuur 7B). Als op droge gronden berekening wordt toegepast, bedraagt de totale stikstofgift maximaal 360 kg per hectare.
Figuur 7. Gebruik van stikstof via weidemest, stalmest en kunstmest per hectare grasland op vochtthoudende gronden en droge gronden als functie van de veebezetteding bij maximale beweiding. Bij vochtthoudende gronden is tot 1,8 melkkoe/ha sprake van onbeperkt weiden, daarna geldt het systeem van beperkt weiden. Voor droge gronden is uitgegaan van beperkt weiden.

De verhouding tussen weidemest en stalmest.
Als er meer vee komt, worden de beweidingsmogelijkheden minder. Dat wordt opgevangen door de weidegang te beperken (alleen overdag weiden) en snijmals tijdens de nacht bij te voeren. Daardoor wordt ook het zomerrantssoen eewitarmer en daalt de stikstofhoeveelheid in de weidemest per dier. Omdat de dieren korter in de weide zijn en langer op stal, neemt de hoeveelheid weidemest af en stijgt de hoeveelheid stalmest. Dat is echter geen continu proces maar een overgang die plotseling optreedt, zoals is te zien in figuur 7 (links). Op de vochtthoudende gronden is onbeperkt weiden (dag en nacht, zonder bijvoeding) nog bij een zo hoog mogelijke veebezetteding getracht uit te voeren. In de praktijk kiezen veehouders vanwege een eenvoudiger management vaak al eerder voor beperkte weidegang met bijvoeding. Op de droge zandgronden wordt door bijna alle bedrijven beperkt geweid. Daarom is daar voor alle situaties gerekend met beperkt weiden. De effecten van onbeperkt weiden met lage veebezetteding staan beschreven in annex 2.

De beweidingsmogelijkheden bepalen ook de maximale veebezetteding in figuur 7. De beweidingsmogelijkheden zijn beschreven in annex 1. Boven veebezettedingen van 2,8 mk/ha (vochtthoudende gronden) en 2,5 (droge gronden) is nauwelijks beweiding meer mogelijk en blijven de dieren het gehele seizoen op stal. Bij droge gronden die beregend worden ligt de omslag naar stalvoedering bij 2,6 mk/ha. De effecten van stalvoeren worden beschreven in annex 2.
Resumé
Uit figuur 7 blijkt dat bij een stijgende veebezetting de stikstofgift stijgt tot een maximumwaarde. Als het maximum is bereikt, gaat een toenemende veebezetting (i.e. een stijgende stikstofhoeveelheid in dierlijke mest) gepaard met een afname van de kunstmestgift. Bovendien daalt op de vochtvriendelijke gronden de hoeveelheid weidemest door een afname van de beweidingsmogelijkheden. Op vochtvriendelijke gronden is bij toepassing van Minas de toevertrouwde maximaal ca. 450 kg stikstof uit dierlijke mest en kunstmest. Op droge gronden is dit maximaal ca. 330 kg/ha. Bij deze hoeveelheden is beperkt weiden van de veestapel nog mogelijk.

5.6 De maximum stikstoftoediening via dierlijke mest: begrenzing door nitraatnorm in grondwater

Om na te gaan of de in paragraaf 5.5 genoemde maximale hoeveelheden stikstof binnen een graasdierbedrijf niet tot overschrijding van de nitraatdoelstelling van 50 mg/l in het bovenste grondwater zullen leiden, is nagegaan welke nitraatconcentraties aldaar verwacht kunnen worden. In figuur 8 (vochtvriendelijke grond) en figuur 9 (droge grond) zijn de resultaten weergegeven. De totale stikstofgift van figuur 7 is hierbij het uitgangspunt geweest.

Vochtvriendelijke gronden
In figuur 8 zijn twee lijnen te zien: een lijn van de nitraatconcentraties bij onbeperkt weiden en een lijn bij beperkt weiden. Figuur 8 laat zien dat bij vochtvriendelijke gronden de nitraatconcentratie van 50 mg/l in het bovenste grondwater niet wordt overschreden in het gehele onderzochte traject van veebezettingen. Dit geldt zowel voor onbeperkt als beperkt weiden. Bij een stikstofproductie uit dierlijke mest van meer dan ca. 260 kg/ha (1,8 melkkoe/ha) kan niet meer onbeperkt worden geweid en moet worden overgeschakeld naar beperkt weiden (de beweidingsduur daalt dan van 20 uur/dag naar 8 uur/dag). De berekende nitraatconcentratie is bij beperkt weiden lager dan bij onbeperkt weiden. Dat wordt veroorzaakt door de kleinere hoeveelheid weidemest. In de situatie met onbeperkt weiden kan ca 260 kg/ha stikstof uit dierlijke mest worden toegestaan. Bij beperkt weiden is dit maximaal ca. 360 kg/ha. De lichte daling in de nitraatconcentratie bij beperkt weiden is een gevolg van een toenemende hoeveelheid bijvoeding met snijmais in de weide en van de daling van de werkzame stikstof. De kunstmestgift daalt vrij sterk en slechts de helft van de stikstof uit dierlijke mest is direct werkzaam.

Droge gronden
Voor de droge gronden geldt bij onbeperkt weiden dat de nitraatconcentratie van 50 mg/l snel wordt overschreden. Boven een excretie van 200 kg/ha (veebezetting 1,4 melkkoe/ha) kan onbeperkt weiden niet meer plaatsvinden. Bij beperkt weiden blijkt tot een stikstofproductie van ca. 290 kg/ha de nitraatconcentratie zich net op het niveau van de 50 mg/l norm voor nitraat in het bovenste grondwater bevindt (zie figuur 9). Op droge gronden die beregend worden kan ca. 310 kg/ha in de vorm van dierlijke mest worden toegediend. De nitraatconcentraties kunnen nog afnemen tot ca. 40 mg/l als bij het systeem van beperkt weiden de beweiding op 1 september wordt gestopt in plaats van op 1 november (zie figuur 20 in annex 2).
Figuur 8. De nitraatconcentratie in het bovenste grondwater bij graasdierbedrijven op vochthoudende gronden (Gt IV) als functie van de stikstofproductie met dierlijke mest, bij verschillende vormen van beweiding.
Figuur 9. De nitraatconcentratie in het grondwater bij graasdierbedrijven op droge gronden (Gi VII) als functie van de stikstofproductie met dierlijke mest, bij verschillende vormen van beweiding.

5.7 De maximum stikstoftoediening via dierlijke mest: begrenzing door de verliesnorm voor fosfaat

In het voorgaande is al aangegeven dat een stijgende veebezetting leidt tot grotere voeraankopen en minder kunstmest. Door de aankoop van zowel ruw- als krachtvoer komt ook fosfaat binnen op het bedrijf. Het fosfaatoverschot stijgt bij een stijgende veebezetting. Maar ook het fosfaatoverschot is aan een maximum gebonden (zie ook tabel 2 in de tekstbox). Bij de hoogste veebezettingen (en dus de hoogste excreties) in de voorgaande paragrafen is het fosfaatoverschot al groter dan 20 kg per hectare. Wanneer tevens de verliesnorm voor fosfaat in rekening wordt gebracht (voor grasland 20 kg/ha, zie tabel 2), dan moeten de hierboven genoemde hoeveelheden stikstof die met dierlijke mest worden aangevoerd met ca 50 kg/ha worden verminderd. Een beschrijving hiervan en van de effecten van het gebruik van krachtvoer met een lager fosforgehalte staan in annex 2.
5.8 Discussie en gevoeligheidsanalyse

Vergelijking berekeningen met proefvelden

In de berekening voor de vochthoudende gronden werd de maximale stikstoftoediening begrensd op ongeveer 450 kg per hectare (zie paragraaf 5.5, figuur 7A). Daarbij waren de nitraatconcentraties in het bovenste grondwater lager dan 50 mg per liter. Op het proefveld te Ruurlo (paragraaf 4.3, figuur 2) werd een nitraatconcentratie van 50 mg per liter bereikt bij een stikstofgift van 400 kg per hectare uit dierlijke mest. Daarmee is de stikstofaanvoer in de berekeningen ruim 10 % hoger dan op het proefveld.

Dit verschil wordt voornamelijk veroorzaakt door een geringere denitrificatie. De afbraak van nitraat is op het proefveld minder sterk dan in de bedrijfsberekeningen. De grondwatertrap op het proefveld in Ruurlo was Gt V en V*, waarbij gemiddeld 50 % van de minerale stikstof aan het einde van het groeiseizoen als nitraat in het bovenste grondwater werd gemeten. De rest is door denitrificatie afgebroken. In de bedrijfsberekeningen is gewerkt met een Gt IV, waarbij slechts 43 % van de minerale stikstof als nitraat wordt teruggevonden (Boumans et al., 1989).

Onbeperkt weiden op droge gronden

Bij toepassing van onbeperkt weiden op de zeer droge gronden wordt de nitraatconcentratie van 50 mg per liter overschreden, zelfs al bij veebezettingen waarbij de stikstofexcretie nog 170 kg / ha of lager is. De gegevens over beweiding (zie tabel 1 in annex 1) laten zien dat onbeperkt weiden in het oosten en zuiden van het land weinig voorkomt. De droge zandgronden concentreren zich in die regio’s. Het aandeel dieren met onbeperkte weidegang zal daar zeer beperkt zijn. De reeds aanwezige autonome trend naar minder beweiden zal door het systeem van verliesnormen nog versterkt worden (zie annex 1).

Snijmais in bouwplan

In de berekeningen is uitgegaan van graasdierbedrijven met 100% grasland. In de praktijk hebben graasdierbedrijven behalve gras ook snijmais in het bouwplan. Bij een gras-maïs verhouding van 75%-25% nemen de mogelijkheden van beweiding af. De maximale veebezetting waarbij beweiding nog kan, is 2,0 melkkoeien per hectare, in plaats van de 2,5 tot 2,6 bij 100% grasland. Bij een schone uitvoering van de maïsteeft (Schröder, 1998) kan ook daar de stikstofuitspoeling beperkt blijven. Het stikstofgebruik per hectare is lager en de berekende nitraatconcentraties blijken dan ook iets lager te zijn vergeleken met bedrijfssituaties waar sprake is van uitsluitend grasland (zie annex 2).

Effect van een hogere melkproductie per koe

Bij de berekeningen in de paragrafen 5.3 - 5.6 is uitgegaan van een melkproductie per koe van 7340 kg / jaar. Bij een hogere melkproductie van 9000 kg / jaar verandert de relatie tussen veebezetting en stikstofproductie. De koeien nemen meer voer op en scheiden meer stikstof uit. Bij eenzelfde veebezetting als bij 7340 kg melk is de stikstofhoeveelheid uit dierlijke mest dus groter. Er is dan minder ruimte voor kunstmest. Ook bij de hogere melkproductie komt de stikstoftoevoer per hectare uit op maximaal 450 kg per hectare. Bij eenzelfde veebezetting als bij de lage melkproductie is de stikstof in de weidemest wel iets hoger, maar de stikstof uit de kunstmest is lager. Deze twee effecten heffen elkaar ongeveer op. De nitraatuitspoeling verandert
daarom slechts weinig. Voor een nadere toelichting hierop wordt verwezen naar annex 2.

Hogere stikstofexcretie en een lagere efficiëntie in de bedrijfsvoering
In de bedrijfsberekeningen is uitgegaan van een praktische bedrijfsvoering bij een goed management. Wat gebeurt er met het stikstofgebruik en de nitraatuitstoting bij een minder efficiënte bedrijfsvoering? Een minder efficiënte bedrijfsvoering zal zich kunnen uiten in een hogere stikstofvoorziening van het vee en grotere verliezen bij beweiding en voeding.

Bij lage veebezettingen leidt deze lagere efficiëntie tot een hoger stikstofoverschot, omdat meer kunstmest moet worden aangekocht. Er moet dan vanwege de hogere voeroverlevering meer voer worden geproduceerd. Zodra het stikstofoverschot het toelaatbaar maximum bereikt, leidt de lagere efficiëntie (“slordig” werken) tot een lagere kunstmestaankoop in vergelijking met de basissituatie (“netjes” werken; zie figuur 10). Zoals al eerder is aangegeven, is er bij een hogere aanvoer van stikstof via ruw- en krachtvoer een lagere kunstmestaanvoer mogelijk.

![Diagram](image)

Door de andere werkwijze (“slordig”werken) is de stikstofexcretie per hectare wel duidelijk hoger, zelfs hoger dan de forfaitaire waarden (Tamminga et al., 2000). Als vervolgens de stikstofvoevoer via dierlijke mest en kunstmest wordt vergeleken met de stikstofexcretie per hectare voor de basissituatie en de andere werkwijze, dan blijkt dat de andere werkwijze met een minder goed management, in elk geval niet tot een hogere stikstofvoevoer per hectare leidt (zie figuur 11). Ook hier wordt door het maximaal toelaatbare stikstofverschot de totale toediening begrensd.
De totale stikstoftoediening via dierlijke mest en kunstmest per hectare wordt slechts in beperkte mate beïnvloed door de de stikstofexcretie van het vee en door precisie van de bedrijfsvoering. Voor de droge gronden worden vergelijkbare effecten gevonden.

5.9 Conclusie

In dit hoofdstuk is de relatie tussen veebezetting, stikstofexcretie, stikstoftoediening en nitraatuitrusting van een graasdierbedrijf beschouwd. Om de relaties zo scherp mogelijk in beeld te krijgen, zijn de analyses uitgevoerd voor bedrijven met 100 % grasland.

Voor een traject van veebezettingen van 1 tot 2,8 melkkoe/ha (met het bijbehorend jongvee) is nagegaan hoeveel stikstof uit dierlijke mest op een graasdierbedrijf wordt geproduceerd en op het grasland gebruikt wordt. Ook is nagegaan wat de mogelijkheden voor het gebruik van kunstmest zijn binnen de ruimte die de verliesnormen voor stikstof bieden. Er is geen rechtlijnig verband tussen stikstofproductie van het vee en de veebezetting.

Op droge gronden is de totale stikstofhoeveelheid (dierlijke mest en kunstmest) die op de bodem kan worden gebracht aanzienlijk lager dan op vochthoudende gronden (respectievelijk ca 330 kg/ha en ca 450 kg/ha). Het blijkt dat met name de mogelijkheden om kunstmest aan te voeren sterk worden beperkt en wel meer naarmate de veebezetting hoger en de grond droger is.
Vervolgens is onderzocht of met deze stikstoefgift de nitraatconcentratie van 50 mg/l in het bovenste grondwater niet wordt overschreden. Op vochtoudergronden is beweiding technisch mogelijk tot een veebezetting met bijbehorende stikstofexcretie van ca. 360 kg per hectare. Tot die stikstofexcretie wordt de nitraatconcentratie in het bovenste grondwater van 50 mg per liter niet overschreden. Voor droge gronden geldt een hoeveelheid van ca. 290 kg/ha. (bij toepassing van berekening: 310 kg/ha). Bij die waarden wordt de nitraatconcentratie van 50 mg/l net bereikt. Deze hoeveelheden gelden bij een systeem van beperkt weiden.

De maximale stikstofhoeveelheid die via dierlijke mest kan worden toegediend wordt tevens begrensd door de verliesnorm voor fosfaat. Wanneer deze in rekening wordt gebracht, moeten de hierboven genoemde maximale stikstofhoeveelheden via dierlijke mest met ca 50 kg/ha worden verminderd. Bij toepassing van krachvoer met een verlaagd fosforgehalte is deze vermindering ca 30 kg/ha.

Door andere bedrijfssomstandigheden, zoals een hogere melkproductie, snijmais op het bedrijf, een hogere stikstofexcretie en een lagere efficiëntie in de bedrijfsvoering is er sprake van een smalle bandbreedte van ongeveer 10 kg onder en boven de hiervoor genoemde getallen van de stikstofexcretie per hectare.
6. Stikstofoverschot van graasdierbedrijven in relatie tot nitraat in grondwater en stikstofbelasting van oppervlaktewater

6.1 Vraagstelling
Wat kan op basis van meetgegevens worden gezegd over de te verwachten nitraatconcentratie in het bovenste grondwater onder graasdierbedrijven en wat is het effect op de stikstofbelasting van het oppervlaktewater?

6.2 Van stikstofoverschot naar nitraat in grondwater

Monitoring grondwaterkwaliteit bij graasdierbedrijven op zandgrond
In het meetnet van het RIVM/LEI (Fraters et al., 1997) zijn veel gegevens verzameld over de nitraatconcentraties in het bovenste grondwater en zijn verbanden gelegd met de kenmerken van de bemonsterde bedrijven. De verzamelde gegevens bieden de mogelijkheid om de relatie tussen stikstofoverschot en grondwaterkwaliteit op bedrijfssniveau goed te beschrijven (Fraters et al., 1997). De resultaten van het meetnet kunnen daarom als een aanvulling en validatie worden gezien van de in hoofdstuk 5 uitgevoerde berekeningen.

Extrapolatie naar situaties met lage stikstofoverschotten
Op basis van de ontwikkelde relaties tussen de metingen en het stikstofoverschot uit het meetnet op gangbare bedrijven aangevuld met gegevens over het Proefbedrijf Melkveehouderij en Milieu “De Marke” (zie annex 3 voor gegevens) is een extrapolatie gemaakt naar situaties met lagere stikstofoverschotten en een groter aandeel dierlijke mest in de stikstoftoediening. De werkwijze is toegelicht in annex 4.

Bij grasland op zandgrond met grondwatertrap IV kan een gemiddelde nitraatconcentratie verwacht worden van 47 mg/l (stikstofverliesnorm: 180 kg/ha). Bij grondwatertrap VII (stikstofverliesnorm: 140 kg/ha) is de gemiddelde concentratie 51 mg/l. Rond deze waarden is sprake van een bandbreedte van 39-54 mg/l (vochthoudende grond; Gt IV) en van 42-59 mg/l (droge grond;Gt VII) uitgaande van een gemiddeld neerslagoverschot. De bandbreedte wordt groter door variaties in het neerslagoverschot (zie annex 4). De gemiddelde waarden komen goed overeen met de berekende concentraties in hoofdstuk 5.

De nitraatconcentratie in de bovenste meter van het grondwater is bij eenzelfde stikstofoverschot per hectare sterk afhankelijk van de grondwaterstandsklasse. Naarmate de gronden natter zijn, wordt in de praktijk bij gelijke uitspoeling een lagere concentratie gemeten (Fraters et al, 1998). Dit wordt toegeschreven aan een hogere afbraak (denitrificatie) van de uitgespoelde nitraatstikstof.
Het beeld van de huidige en de verwachte nitraatconcentraties voor natte, matig droge en droge zandgronden is weergegeven in figuur 12.

Figuur 12 geeft een bandbreedte van de nitraatconcentraties voor:
1. De huidige situatie met een gemiddeld stikstofoverschot van ca. 400 kg/ha bij graasdierbedrijven (Fraters et al, 1997).
2. De situatie na het realiseren van de generieke verliesnormen van 180 kg/ha voor grasland en 100 kg/ha voor bouwland voor alle gronden (de met "1" aangegeven
pijlen). Voor de droge gronden is dit onvoldoende.

3. De situatie na het realiseren van aangescherpte verliesnormen voor de droge (zand)gronden van 140 kg/ha voor grasland en 60 kg/ha voor bouwland (de met "2" aangegeven pijl). Voor de zeer droge gronden is het nog onduidelijk of de nitraatnorm in de bovenste meter van het grondwater wordt gerealiseerd. Vergeleken met de huidige situatie zal de mate van overschrijding van de nitraatnorm (50 mg/l in het bovenste grondwater) zeer sterk afnemen.

Figuur 12: *Schets van de effecten van het realiseren van de voorgenomen verliesnormen voor stikstof op de nitraatconcentraties in het bovenste grondwater onder landbouwbedrijven op natte, matig droge en droge gronden in de zandgebieden* (naar: Bresser et al., 1999).

Bij de grondwaterklassen in het linkerdeel van figuur 12 (natte en matig droge zandgronden) is verlaging van het stikstofoverschot en daarmee van de stikstoftoevoer ten opzichte van de huidige situatie vooral nodig om de stikstofbelasting van het oppervlaktewater te beperken.

Grasland op kleigronden

Het linker gedeelte van figuur 12 is ook van toepassing op grasland op kleigronden. De nitraatconcentraties in drainwater van klei-grasland liggen lager dan de waarden die in het bovenste grondwater onder zandgrond worden gemeten. (in de winter 1997/1998 lag de nitraatconcentratie in het drainwater bij landbouwbedrijven op kleigrond gemiddeld op 85 mg/l; RIVM/CBS, 1999). Zie ook figuur 13 en de tekstbox voor een vergelijking van de stikstofuitspoeling van grasland vergeleken met die van bouwland op kleigrond.
Uitspoeling naar oppervlaktewater: een vergelijking van grasland en bouwland op kleigrond

Figuur 13 toont de stikstofuitspoeling van grasland en bouwland op kleigrond als functie van het totale gebruik van stikstof. Het bouwland kreeg kunstmest en dierlijke mest toegediend, op het grasland vond de stikstoftoevoer behalve via kunstmest ook door stalmeest en weidemest plaats. Ondanks de grotere stikstoftoediening op grasland is de uitspoeling van stikstof naar het oppervlaktewater via drains van vergelijkbare grootte.

![Diagram](image)

Grasland op veengronden

Voor grasland op veengronden worden zelfs bij de huidige stikstofoverschotten (gem. 335 kg/ha volgens Minas; Groot *et al.*, 1998) geen nitraatconcentraties gemeten die hoger zijn dan 50 mg/l. De concentraties liggen zowel in het grondwater als in het direct aangrenzende slootwater beneden 25 mg/l (Fraters *et al.*, in prep.).
Een nauwkeuriger beeld van de toekomstige situatie wordt verkregen als meer gegevens beschikbaar komen over de relatie tussen stikstofoverschot en nitraatconcentraties in het grondwater bij lagere stikstofoverschotten dan die thans gangbaar zijn. In de komende jaren zal de in gang gezette intensieve bedrijfsmonitoring op zand- klei- en veengronden deze informatie opleveren.

6.3 Van stikstofoverschot naar stikstofbelasting van oppervlaktewater

Het verband tussen stikstofoverschot en stikstofbelasting van de bodem en de kwaliteit van het oppervlaktewater is sterk afhankelijk van de waterhuishouding en deze varieert zeer sterk tussen verschillende gebieden. Vooral daar waar natte zandgronden en kleigronden voorkomen, is de invloed van het meststofengebruik op de belasting van het oppervlaktewater van belang (Van Eck, 1995). De doelstelling van de Nitraatrichtlijn is voor wat betreft het oppervlaktewater vertaald in het realiseren van een reductie in de stikstofbelasting van 50% ten opzichte van 1985. De stikstofbelasting van oppervlaktewater als gevolg van het toedienen van dierlijke mest en kunstmest vindt plaats via het transport met grondwater. Bij hoge grondwaterstanden gebeurt dit vooral via snelle afvoer naar drains, met name in kleigronden. Voorts kan belasting plaatsvinden door het meemesten van sloten bij onzorgvuldige mesttoediening en door afspoeiling over het maaiveld.

Voor grasland geldt dat de directe belasting door meemesten en afspoeilen als gevolg van het toedienen van dierlijke mest van beperkte betekenis zijn. Dit, vanwege de vlakke ligging van de bodem en omdat op grasland de dierlijke mest ammoniak-emissiearm in het groeiseizoen wordt toegediend. Bovendien zijn per 1 maart 2000 bemestingsvrije zones langs watergangen verplicht. Net als in hoofdstuk 4 voor het grondwater is uiteengezet, geldt ook voor de stikstofbelasting van het oppervlaktewater, dat de hoogte van de stikstofbemesting de maatgevende factor is en niet de herkomst van de stikstof.

Behalve door de hierboven genoemde maatregelen om directe belasting tegen te gaan, zullen door het systeem van verliesnormen de huidige stikstofoverschotten van graasdierbedrijven op veen (Minas-overschot ca. 335 kg/ha; Groot et al, 1998) en van graasdierbedrijven op (rivier)klei (Minas-overschot ca. 360 kg/ha; Groot et al, in prep.) gereduceerd worden naar 180 kg/ha bij 100% grasland. Dit is een afname van 46% (veen) en 50% (klei). Met name bij de gedraineerde kleigronden zal dit leiden tot lagere nitraatconcentraties in het drainwater.

Zoals in hoofdstuk 5 voor zandgronden is uitgewerkt, geldt ook op klei- en veengronden dat, als voldaan wordt aan de verliesnorm voor stikstof, een grotere hoeveelheid stikstof via dierlijke mest kan worden aangevoerd dan de 170 kg/ha die de richtlijn voorschrijft. In die situatie zullen ook op klei- en veengronden de beweidingsmogelijkheden kleiner worden en zal het gebruik van kunstmest afnemen.
Het effect van een lager stikstofoverschot op de stikstofbelasting van het oppervlaktewater is dat deze, door een kleinere stikstofuitspoeling van grasland, naar verwachting in dezelfde mate zal dalen. Dit is in overeenstemming met wat door Oenema et al. (1997) voor het gehele land is gerapporteerd. (zie figuur 14). Hierin is uitgegaan van de “eindverliesnormen” per 2008. In deze figuur is sprake van naijling: het maximale gebruik van stikstof via dierlijke mest en kunstmest van de periode 1985-1987 vertaalt zich in een piekbelasting rond ca 1995. De voorgenoemde aanscherping van de verliesnormen voor stikstof zal ertoe leiden dat ook de bijdrage vanuit landbouwgronden (uitspoeling) zal worden teruggedrongen. Dit is conform de afspraak die door de landen die deelnemen aan PARCOM is gemaakt om de stikstofbelasting van de Noordzee uit alle bronnen, met 50% te verminderen.

N-belasting oppervlaktewater

![Diagram](image)

Figuur 14. Modelberekening van het effect van stikstofverliesnorm op de stikstofbelasting van het oppervlaktewater door af- en uitspoeling van landbouwgronden (uit: Oenema et al., 1997).

6.4 Conclusie

Uitgaande van het verband tussen huidige stikstofoverschotten en gemeten nitraatconcentratie in het bovenste grondwater in de Nederlandse zandgebieden, is nagegaan wat de de nitraatconcentratie in het bovenste grondwater onder landbouwgronden zal zijn door de begrenzing van de stikstofoverschotten via het systeem van verliesnormen. Voor de vochtgedwongen en de droge gronden worden nitraatconcentraties berekend van gemiddeld 47 en 51 mg per liter. Deze waarden komen goed overeen met die uit de bedrijfsberekeningen van hoofdstuk 5. Voor het grondwater betekent dit, dat de uitspoeling zal verminderen en de mate waarin de nitraatconcentratie van 50 mg/l in het bovenste grondwater worden overschreden sterk zal afnemen. Voor het oppervlaktewater zal de halvering van de stikstofoverschotten in de nattere zandgebieden en in de klei- en veengebieden, in combinatie met de emissiebeperkende
maatregelen (mestvrije perceelsranden langs watergangen) ook de belasting van het oppervlaktewater met ca. 50% doen verminderen.
Hieruit kan geconcludeerd worden dat de doelstelling van de richtlijn namelijk “de waterverontreiniging die wordt veroorzaakt of teweeggebracht door nitraten uit agrarische bronnen te verminderen”, zal worden gerealiseerd.
7. Synthese en conclusie

De Nitraatrichtlijn richt zich op het in balans brengen van de stikstofbehoefte van gewassen en de stikstofvoorziening via stikstoflevering uit de bodem en de toediening van stikstof via dierlijke mest en kunstmest.
Het Nederlandse mineralenbeleid is hiermee in overeenstemming. De balans tussen gift en afvoer van stikstof via het gewas moet zodanig zijn dat de verliezen die bij de plantaardige productie optreden, niet tot overschrijding van de milieudoelstellingen leiden. Voor grondwater is voor de Nederlandse situatie de doelstelling van de Nitraatrichtlijn vertaald in het bereiken van de 50 mg/l waarde voor nitraat in het bovenste grondwater en een daling van de stikstofbelasting van het oppervlaktewater met 50% ten opzichte van 1985.
De Nitraatrichtlijn bevat een norm voor de hoeveelheid dierlijke mest die vanaf 2003 maximaal op gras- en bouwland mag worden gegeven. Deze bedraagt 170 kg/ha. De richtlijn geeft aan dat afwijken hiervan mogelijk is mits dit wordt onderbouwd. De richtlijn bevat voor een dergelijke derogatie een aantal objectieve criteria.

In dit hoofdstuk worden de bevindingen van de voorgaande hoofdstukken bij elkaar gebracht om van daaruit conclusies te trekken.

Criteria voor derogatie
Uit hoofdstuk 3 blijkt dat gras een gewas is dat onder Nederlandse omstandigheden vergeleken met akkerbouwgewassen, een 2-4 maanden langer groeiseizoen heeft en per jaar ca. 60 tot 150 kg per hectare meer stikstof opneemt. Daarom kan de stikstoftoediening naar gras hoger zijn dan de 170 kg/ha die voor andere gewassen geldt.

Uitspoeling van dierlijke mest vergeleken met kunstmest
In hoofdstuk 4 is eerst nagegaan of een stikstofgift via dierlijke mest tot meer uitspoeling leidt vergeleken met kunstmest. Hier is aangegeven dat onderscheid gemaakt moet worden tussen stalmest en weidemest. Stalmest wordt alleen in het groeiseizoen aangewend. Door de goede verdeling van de stalmest wordt een aanzienlijk deel van de stikstof door het gras benut. Voor weidemest geldt dit echter in veel mindere mate. Dit komt deels door de slechte verdeling en deels door de late “aanwending” in het groeiseizoen.
Proefveldonderzoek met stikstoftoediening via stalmest op vochthoudende zandgrond met Gt V/V* laat zien, dat het mogelijk is tot ca. 400 kg/ha stikstof via dierlijke mest aan te voeren, voordat de nitraatconcentratie van 50 mg/l in het bovenste grondwater wordt bereikt. De hoogte van de stikstofgift heeft het sterkste effect op de uitspoeling, de vorm van de aangewende stikstof (kunstmest of dierlijke mest als stalmest) speelt een beperkte rol.
Op proefvelden met de combinatie van weidemest en kunstmest (beweidingsproeven uitgaande van onbeperkt weiden) op een matig droge zandgrond (Gt VI) werd de nitraatconcentratie van 50 mg/l in het bovenste grondwater overschreden bij een totale stikstofgift van bijna 400 kg N per ha. Hiervan komt ca. 200 kg/ha voor rekening van de weidemest. Een grote stikstoftoevoer via weidemest is uit oogpunt van grondwaterkwaliteit ongunstig.
Hoeveel stikstof kan via dierlijke mest op grasland worden aangevoerd?

In hoofdstuk 5 is de vraag aan de orde hoeveel stikstof met dierlijke mest op grasland mag worden gebruikt. Voor de beantwoording van deze vraag is een modellenadering gevolgd waarmee de stikstofhuishouding op bedrijfsniveau wordt beschreven. Als randvoorwaarde gelden de voorgenomen verliesnormen voor stikstof. Op bedrijfsmatten is dit bijna alle perceel sprake van een combinatie van stalmest, weidemest en kunstmest. Dergelijke combinaties zijn nooit onderwerp van proefveldonderzoek geweest. De stikstofaanvoer naar bedrijven is aan grenzen gebonden door regulering van het overschot (verliesnormen). Hierdoor wordt ook de toever van stikstof naar de bodem beperkt. Op vochthoudende gronden (berekend voor Gt IV) kan via weidemest, stalmest en kunstmest maximaal ca. 450 kg stikstof per hectare worden gebruikt. Op de droge gronden is dit slechts ca. 330 kg N (berekend voor Gt VII). Deze gebruikscijfers zijn ongevoelig voor maïs in het bouwplan, melkproductie, een andere stikstofbehoefte van de veestapel en een lagere efficientie in de bedrijfsvoering.

Ervan uitgaande dat beweiding moet plaatsvinden, is bij een stikstofgebruik via dierlijke mest van 360 kg N op vochthoudende gronden de nitraatconcentratie in het bovenste grondwater maximaal 45 mg per liter. Op de droge gronden is bij een stikstofgebruik via dierlijke mest van ca. 290 kg N de nitraatconcentratie maximaal 51 mg per liter. (Dit is ca. 310 kg/ha bij toepassing van berekening)

Wanneer tevens rekening wordt gehouden met de verliesnorm voor fosfaat (20 kg per hectare, exclusief kunstmest) is een gebruik van dierlijke mest van ca. 310 kg N op vochthoudende gronden en ca. 240 kg N op droge gronden mogelijk (260 kg/ha in geval van berekening).

Deze hoeveelheden kunnen ca.20 kg hoger worden door gebruik van krachtvoer met verlaagde fosfaatgehalten. Ze komen dan uit op respectievelijk 330 en 260 kg/ha (280 kg/ha bij berekening).

Gevoeligheidsanalyse

In hoofdstuk 5 is gerekend voor zandgronden en met twee grondwatersituaties (Gt-klassen), die sterk verschillen in productiviteit. De vochtbevende grond (Gt IV) kent nauwelijks droogteschade, de droge grond is droogtegevoelig (Gt VII). In werkelijkheid is sprake van een variatie in grondsoorten en vochtsituaties. Dit leidt ertoe dat sprake zal zijn van een bandbreedte rond deze cijfers. Deze bandbreedte wordt vooral bepaald door de droogtegevoeligheid en slechts in beperkte mate door de bedrijfsvoering.

Een klein gedeelte van de droge gronden heeft Gt VIII en is daarmee nog droger dan de hier berekende situatie. Daar is een stikstofgebruik via dierlijke mest van 240 kg/ha mogelijk te hoog. Op iets minder droge zandgronden (Gt VI) wordt geraad dat de stikstoftoediening via dierlijke mest 10-20 kg/ha hoger kan zijn dan bij zandgrond met Gt VII.

Voor nattere gronden dan Gt IV kan wellicht sprake zijn van hogere waarden dan de genoemde 360 kg/ha, mits voldaan wordt aan de verliesnormen volgens Minas.

Grondwatermonitoring op bedrijfsniveau

In hoofdstuk 6 is op basis van een verband tussen de huidige nitraatemetingen in het bovenste grondwater en de huidige stikstofoverschotten getoetst waar de situaties met stikstofoverschotten welke in 2003 voorzien worden en waarin het aandeel dierlijke mest in de stikstoftoediening groter is dan thans gebruikelijk. Hieruit blijkt
De verwachte nitraatconcentratie bij de verliesnormen voor droge en niet droge gronden goed overeen te komen met de in hoofdstuk 5 gevolgd benadering.

De verwachte reductie van de stikstofbelasting van het oppervlaktewater

De belasting van het oppervlaktewater moet t.o.v. het niveau van 1985 met 50% teruggebracht worden. Dat kan worden gerealiseerd door de voorgenomen aanscherping van de verliesnormen voor bedrijven die op nattere gronden zijn gelegen. Deze zullen globaal gehalteerd worden. Hierbinnen past een grotere hoeveelheid dierlijke mest dan de norm die in de Nitraatrichtlijn voor grasland is genoemd.

Samenvattend:

Door het gecombineerde effect van de mineralenwetgeving op:

- de grootte van het stikstofoverschot, waardoor het maximale gebruik van stikstof uit stalmest, weidemest en kunstmest per hectare grasland wordt begrensd;
- de ontwikkeling naar minder beweiding in de nabije toekomst;

kan worden voldaan aan de doelstelling van de Nitraatrichtlijn bij het gebruik van hoeveelheden stikstof zoals weergegeven in tabel 3. Hierin is tevens aangegeven wat het effect is van de begrenzing door de verliesnorm voor fosfaat.

Tabel 3. Maximale gebruik van stikstof op grasland

<table>
<thead>
<tr>
<th>Criterium voor N-gebruik</th>
<th>vochthoudend</th>
<th>droog</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. max. N-gebruik via kunstmest + dierlijke mest eis: N-verliesnorm Minas</td>
<td>ca. 450</td>
<td>ca. 330 (ca. 360 bij beregening)</td>
</tr>
<tr>
<td>2. max. N-gebruik via dierlijke mest eis: als 1 en: max. 50 mg/l nitraat in bovenste grondwater</td>
<td>ca. 360</td>
<td>ca. 290 (310 bij beregening)</td>
</tr>
<tr>
<td>3. max. N-gebruik via dierlijke mest eis: als 2 en: fosfaat-verliesnorm (standaard krachtvoer)</td>
<td>ca. 310 <sup>1)</sup></td>
<td>ca. 240 <sup>1)</sup> (ca. 260 bij beregening) <sup>1)</sup></td>
</tr>
</tbody>
</table>

¹⁾ ca 20 kg/ha hoger als krachtvoer met een verlaagd P-gehalte wordt gevoerd.
Referenties

EU (1999). Beschikking van de Commissie inzake de definities van de kenmerken, de lijst van landbouwproducten, de uitzonderingen op de definities en de regio’s en gebieden voor de enquêtes inzake de structuur van de landbouwbedrijven. Publicatieblad C, nr 3875 van 24 november 1999.

Hassink, J., 1995 Organic matter dynamics and N mieralization in grassland soils. Proefschrift Landbouw Universiteit Wageningen

Werkgroep Aanwijzing EG-nitraat (1994). De aanwijzing van kwetsbare zones in het kader van de EG Nitraatrichtlijn: Milieukundige onderbouwing. IKC-V, RIZA en RIVM.

Annex 1. Beweiding op graasdierbedrijven

1. Gangbare beweidingssystemen in Nederland

Bij beweiding keert een groot deel van de opgenomen N weer terug naar het perceel via mest en urine. De verdeling daarvan is slecht en de benutting van die stikstof is laag. De hoeveelheid stikstof die teruggeeft als mest en urine op gras is vooral afhankelijk van de verblijftijd in de weide. Ook de grasopname en het stikstofgehalte van het gras spelen een rol. Binnen het omweiden wordt daarom in Nederland onderscheid gemaakt in verschillende beweidingssystemen:

Beperkt weiden: op veel bedrijven in de intensieve veehouderijgebieden weidt het melkvee alleen overdag en wordt ’s nachts op stal bijgevoerd. Het aantal uren weidegang ligt dan meestal rond de 8: ’s ochtends na het melken gaan de dieren naar buiten en ’s avonds voor het melken worden ze weer binnengehaald. Het jongvee weidt wel dag en nacht buiten. Ongeveer de helft van de mestproductie in het zomerhalfjaar komt in de wei terecht. De verhouding tussen stalmest en weidemest ligt op deze bedrijven dan op ongeveer 75/25.

Stalvoedering of 0-beweiding: bedrijven die het melkvee en het jongvee het gehele jaar op stal houden. Zij doen dat bijvoorbeeld vanwege een slechte verkaveling of vanwege de installatie van een automatisch melksysteem. Op deze bedrijven is totaal geen weidemest aanwezig. De verhouding tussen stalmest en weidemest is daar 100/0. De dieren krijgen tijdens de zomer vers of geconserveerd gras op stal gevoerd.

Verdeling van beweidingssystemen in Nederland.
De verdeling van beweidingssystemen in procenten van het aantal melkgevende koeien in Nederland is voor 1997 weergegeven in tabel 1 (CBS, 1997):

<table>
<thead>
<tr>
<th>Beweiding</th>
<th>Oost</th>
<th>Zuid</th>
<th>Noord</th>
<th>West</th>
<th>Totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onbeperkt</td>
<td>33</td>
<td>39</td>
<td>51</td>
<td>75</td>
<td>48</td>
</tr>
<tr>
<td>Beperkt</td>
<td>57</td>
<td>52</td>
<td>42</td>
<td>23</td>
<td>45</td>
</tr>
<tr>
<td>Stalvoeding</td>
<td>10</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Gemiddeld over het gehele land wordt er ongeveer even vaak onbeperkt als beperkt geweid. Stalvoeren vindt slechts op beperkte schaal plaats. Regionaal zijn de verschillen in beweidingssystemen groter. In de meest intensieve regio’s Oost en Zuid met een relatief groot aandeel droge gronden is beperkt weiden het dominante systeem. In West-Nederland met meer extensieve bedrijven en veel veenweidegebieden is onbeperkt weiden het overheersende systeem. Stalvoeding is in alle regio’s nog van beperkte betekenis.

Autonome ontwikkeling naar minder beweiding.

De laatste jaren is er in de praktijk een tendens naar minder beweiding. Daarvoor zijn een aantal oorzaken aan te wijzen:

- De hogere melkproducties per koe (er zijn al veel bedrijven met een gemidelde productie van meer dan 9000 liter per koe per jaar) is men sneller geneigd om de dieren in de herfst eerder op stal te zetten. Deze hoogproductieve dieren zijn, evenals de “verse” koeien, gevoelig voor weersomstandigheden. De weidegang wordt dan in de maanden september en oktober al sterk teruggedrongen.
- De aanschaf van een automatisch melksysteem (AMS) beperkt de beweidingsmogelijkheden sterk: voor een regelmatig bezoek aan de melkrobot mogen de dieren niet te ver van de stal lopen en kunnen dus slechts kleine oppervlakten worden beweid. Boeren schakelen dan over van onbeperkt weiden naar beperkt weiden en van beperkt weiden naar stalvoeren.
- Op de grotere melkveebedrijven (met meer dan 100 dieren) wordt de weidegang beperkt door de grote loopafstanden van de dieren. Voor dergelijke grote koppels dieren kunnen bij onbeperkt weiden loopafstanden optreden van anderhalve kilometer en meer.

Effect mineralenwetgeving op de beweiding

De mineralenwetgeving zoals deze in Nederland van kracht is, zal de autonome tendens naar minder beweiding versterken:

- Bedrijfssystemen waarbij de koeien zo weinig mogelijk weiden, geven de beste benutting van de in dierlijke mest aanwezige stikstof en leiden zowel bij vochthoudende en droge gronden tot de minste uitspoelingsverliezen. Ook zijn de oogstverliezen geringer bij maaien dan bij weiden.
- Door de verlaging van de bemesting daalt de grasproductie op een perceel. Als er minder gras per hectare groeit is voor een zelfde aantal dieren meer hectares nodig. Als die hectares er niet zijn op het bedrijf, wordt de beweiding van de dieren verminderd en krijgen ze meer ruwvoer op stal bijgevoerd. Dat kan zover
gaan dat op de intensievere bedrijven met een hoge veebezetting beweiding straks in het geheel niet meer mogelijk is.

De ontwikkeling naar minder beweiding en met name naar geheel opstallen van vee heeft geleid tot veel discussies in Nederland. Uit oogpunt van dierwelzijn, belevingswaarde (koeien in de wei) en de openheid van de melkveehouderijsector wordt geheel opstallen niet wenselijk gevonden.

2. Beweidingsmogelijkheden

In het voorgaande is al aangegeven dat de mineralenwetgeving invloed heeft op de beweidingsmogelijkheden. De verliesnormen uit de mineralenwetgeving gelden voor de Nederlandse situatie en veehouders zijn daaraan gebonden.

In een situatie waarbij de koeien weiden, wordt nooit de gehele grasproductie van het bedrijf in een groeiseizoen door de dieren opgevreten. Door de hogere groesnelheid in het begin van het groeiseizoen groeit er meer dan kan worden opgevreten door de dieren. De hoeveelheid gras die niet kan worden benut via beweiding wordt gemaaid en ingekuild. Later in het groeiseizoen daalt de grasproductie en wordt relatief een groter deel van de grasproductie door de koeien weggevreten. Er wordt steeds minder gemaaid. Aan het eind van het groeiseizoen neemt de grasgroei dusdanig af dat op een bepaald moment het gras op is. Veehouders kunnen via de planning van weiden en maaien tot eind oktober, begin november hun vee nog weiden. Soms beginnen ze al met bijvoeren van geconserveerd ruwvoer om de dalende grasproductie in de weide op te vangen.
Veel veehouders proberen de percelen twee keer per groeiseizoen te maaien. Zo kunnen ze steeds zorgen voor schoon gras voor de koeien.

De beweidingsmogelijkheden zijn afhankelijk van de mate waarin de bemesting wordt verlaagd door de mineralenwetgeving. Dat is op droge zandgronden sterker dan op de vochtthoudende gronden. Daarnaast heeft de productiviteit van de grond een grote invloed. Op de droge zandgronden wordt de grasproductie geremd door vochttekorten. Daarom zijn de beweidingsmogelijkheden op droge gronden veel kleiner dan op de vochtthoudende gronden. (zie ook annex 2)

Als door de lagere bemesting de grasproductie per hectare afneemt is er minder ruimte om te maaien in het begin van het seizoen. In de tweede helft van het seizoen kan het leiden tot situaties waarbij er voor weidend vee al niet meer genoeg groeit. Die mindere grasgroei kan worden opgevangen door op stal ruwvoer te voeren, zodat de grasbehoefte van de koeien daalt. Om de dieren tijd te gunnen het ruwvoer op te vreten, worden ze ’s nachts op stal gehouden. Veehouders wijzigen dan hun beweidingssysteem. Dat kunnen ze gedurende het groeiseizoen doen, hetgeen bij een aantal bedrijven voorkomt. Op veel bedrijven zullen ze het beweidingssysteem geheel veranderen. Ze schakelen over van onbeperkt weiden naar beperkt weiden met bijvoeding, of bij de intensievere bedrijven naar geheel opstallen.
Om de beweidingsmogelijkheden te schetsen, wordt altijd de hoogste veebezetting op het beschikbare grasland aangegeven waarbij een bepaald systeem nog kan worden uitgevoerd gedurende het gehele groeiseizoen.

<table>
<thead>
<tr>
<th>Beweidingssysteem</th>
<th>Uren weidegang</th>
<th>Droge gronden</th>
<th>Droge gronden met beregening</th>
<th>Vochthoudende gronden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dag en nacht weiden (geen bijvoeding)</td>
<td>20</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Overdag weiden (4 – 8 kg ds bijvoeding)</td>
<td>8</td>
<td>2.5</td>
<td>2.6</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Uit tabel 2 blijkt duidelijk dat de bedrijven op de droge zandgronden niet of nauwelijs onbeperkte weidegang kunnen en zullen toepassen. Als MINAS van kracht wordt, zijn de mogelijkheden beperkt tot alleen overdag weiden.

Deze effecten worden nog versterkt om de volgende redenen:
- Op veel bedrijven op de zandgronden wordt mais geteeld, waardoor de beweidbare oppervlakte vaak kleiner is dan de bedrijfsoppervlakte
- Op veel bedrijven ligt slechts een deel van de bedrijfsoppervlakte bij de stal. Er is (bijna) altijd een veldkavel. Deze veldkavel kan wel dienen voor weiden met jongvee, maar niet voor weiden met melkvee.

3. Invloed van beweiding op het stikstofgebruik op grasland

Grazend melkvee benut doorgaans niet meer dan 20% van de opgenomen N en scheidt de rest uit in mest en urine, pleksgewijs op het perceel. De hoeveelheid in mest uitgescheiden N is evenredig aan de drogestofopname en betreft grotendeels stabiele organische N die slechts zeer langzaam mineraliseert en nauwelijks bijdraagt aan de nitraatuitvoering (van der Meer, 1991). De productie van urine-N is sterk afhankelijk van de N-opname door het vee (Van Vuuren en Meij, 1987). Deze N wordt onder normale omstandigheden snel omgezet in anorganische N en kan sterk bijdragen aan de nitraatuitvoering (Benke,1992; Ryden et al., 1984; Simon et al., 1997; Hack-ten Broeke et al., 1996).

Door de snelle terugkeer van ongeveer 80% van de stikstof in het gras is er in feite veel meer stikstof in omloop dan in een systeem met waarin alleen gemaaid wordt. De verliezen bij beweiding zijn bij lage bemesting al hoog (zie figuur 1, bovenste grafiek). Dat komt omdat de terugkeer van N bij lage bemesting al hoog is. Door de stikstoflevering uit de bodem groeit er op onbemest grasland toch gras en kan er worden geweid. Bij beweiding van onbemest grasland, is er al sprake van een stikstoftevoer (in feite een terugkeer) van ongeveer 90 kg N via mest en urine. Bij een kunstmeststift van 100 kg N per hectare, is er al sprake van een totale stikstoftevoer van ongeveer 240 kg N (100 kg N uit kunstmest en 140 kg N terugkeer via mest en urine).

Als de punten in de bovenste grafiek van figuur 1, worden weergegeven als functie van het totale N-gebruik, wordt de beweidingslijn in horizontale richting naar rechts
verschoven en liggen de situaties met een gelijke kunstmestgift niet meer recht boven elkaar maar gaan elkaar overlappen (onderste grafiek van figuur 1). De in beide grafieken weergeven situatie is ontleend aan van der Meer en Meeuwissen (1989) Het is een modelberekening waarbij alle gras volledig door weidend vee is weggevreten. De grasgroei heeft niet te lijden gehad van droogte. Dat is een situatie die in de praktijk niet zal voorkomen, maar ze illustreert echter uitstekend wat er precies gebeurt bij beweiding: door versnelde terugkeer van stikstof in een slecht benutbare vorm is er veel stikstof in omloop en treden hoge verliezen op.

Annex 2. Stikstofstromen op graasdierbedrijven in relatie tot nitraatuitvoeding

21. INLEIDING EN DOEL VAN DE BEREKENINGEN

2. DE PROCESSEN OP EEN GRAASVEEBEDRIJF

2.1 STIKSTOFUITSCHEIDING IN DIERLIJKE MEST OP EEN GRAASVEEBEDRIJF
2.1.1 Waarom is bemesting aantrekkelijker dan voeraankoop?
2.1.2 De uitwisseling van kunstmeststikstof en voerstikstof
2.2 De invloed van de veebezetting op de verhouding weidemest/stalmeest
2.3 De invloed van snijmais op het bedrijf
2.4 Illustratie van de beschreven processen

3. STIKSTOFTOEDIENING PER HECTARE GRASLAND OP GRAASVEEBEDRIJven

3.1 Stikstofgebruik op droge en vochtthoudende gronden
3.2 Gevoeligheidsanalyse
3.2.1 Invloed van verschillende beweidingssystemen
3.2.2 Effecten van een hogere melkproductie
3.2.3 Het effect van snijmais op graasdierbedrijven
3.2.4 De invloed van een hogere stikstofexcretie
3.2.5 Management-invloeden
3.2.6 Invloed van ontwatering op de stikstoftoediening

4. NITRAATUITSPOEILING OP GRAASVEEBEDRIJVEN

4.1 Droge en vochtthoudende gronden
4.2 Gevoeligheidsanalyse
4.2.1 Effect van beregining van droge gronden
4.2.2 Effecten van een hogere melkproductie
4.2.3 Het effect van snijmais op graasdierbedrijven
4.2.4 Het effect van een hogere stikstofexcretie per dier
4.2.5 Effect van vroeger opstallen
4.2.6 Invloed van ontwatering op de nitraatconcentratie

5. FOSFAATOVERSCHOTTEN OP GRAASVEEBEDRIJVEN

5.1 Begrenzing van de stikstofexcretie via fosfaatoverschotten
5.2 De invloed van ander management

6. CONCLUSIES

7. DE GEBRUIKTE REKENMODELLEN

7.1 Twee benaderingen: een theoretische en een praktische invalshoek
7.2 Uitgangspunten en rekenvarianten
7.2.1 Model N-stroom
7.2.2 BBPR

8. FIGUREN
1. Inleiding en doel van de berekeningen

Uit proefgegevens op perceelsniveau blijkt dat de toediening van stikstof op grasland in de vorm van weidemest en stalmest een belangrijke rol speelt bij de nitraatuitspoeling. De proefgegevens sluiten daarmee goed aan op de gedachte van de nitraatrichtlijn: beperking van het totale stikstofgebruik per hectare. De nitraatrichtlijn geeft daaraan nog een nadere invulling: van de totale stikstofgift mag slechts 170 kg uit dierlijke mest afkomstig zijn.

De stikstofaan- en afvoer op een grasveebedrijf wordt sinds 1998 geregeld via wetgeving: het mineralenaangiftesysteem MINAS. In die wetgeving zijn maximaal toelaatbare stikstof- en fosfaatoverschotten gedefinieerd. In 2003 bedraagt het maximaal toelaatbare stikstofoverschot op vochthoudende gronden 180 kg/ha N, op droge (zand)gronden bedraagt het toelaatbare overschot dan 140 kg/ha N.

De grasproductie op een grasdierbedrijf dient voor de voeding van het vee. De productie van eigen gras is goedkoper zolang de kosten van bemesting en oogsten lager zijn dan de kosten van voeraankoop. De bemestingsadviezen zijn tot nu toe afgestemd op dat uitgangspunt (Unwin & Vellinga, 1994). Voor de bemesting van het grasland gebruikt de boer de dierlijke mest van het eigen vee en aangekochte kunstmest. De dierlijke mest is een interne post, kunstmest moet van buiten het bedrijf aangevoerd worden en is een externe post. Dit is weergegeven in de vereenvoudigde mineralenbalans in figuur 1. Stikstofaanvoer via aangekocht voer is ook een belangrijke aanvoerpost op de mineralenbalans. De afvoer van de balans alle stikstof in melk, vee en eventueel verkoop van ruwvoer en dierlijke mest. Het verschil tussen de aanvoer en afvoer is het overschot op de mineralenbalans. De nitraatrichtlijn richt zich op een combinatie van een interne post (de dierlijke mest) en een aanvoerpost (de kunstmest).

Perceelen zijn dus een onderdeel van een geheel bedrijf. Daarnaast is het overschot aan stikstof gereguleerd op bedrijfsniveau. De belangrijke vragen zijn dan:

- **Hoe verloopst de stikstofaanvoer op bedrijfsniveau en welke gevolgen heeft dit voor de stikstoftoediening op perceelsniveau?**
- **Welke invloed heeft een maximaal toelaatbaar stikstofoverschot op de totale stikstoftoediening op perceelsniveau?**
De doelstelling van de nitraatrichtlijn is voor de Nederlandse situatie vertaald naar het bereiken van een nitraatconcentratie in het bovenste grondwater van 50 mg per liter. Aansluitend op het voorgaande is de volgende vraag van belang:

- **Wordt op graasveebedrijven in Nederland, met inachtneming van de mineralenwetgeving, de doelstelling voor nitraat in het bovenste grondwater gerealiseerd?**

Deze vragen zullen worden beantwoord met behulp van rekenmodellen, waarin alle bedrijfsaspecten zijn geïntegreerd. Voordat de resultaten worden besproken, worden eerst de processen op een graasveebedrijf in detail besproken. Vanwege de vele interacties binnen een bedrijf, leiden ingrepen in de stikstofstroom tot veel verschillende effecten. Daarbij is een gedetailleerde toelichting op zijn plaats. Na de toelichting op de processen in hoofdstuk 2 wordt in hoofdstuk 3 de stikstoftoevoer per hectare beschreven. De beschrijving bevat de resultaten van de berekeningen en een gevoeligheidsanalyse. In hoofdstuk 4 wordt daarna de nitraatuitpersing beschreven. Ook hierbij is een gevoeligheidsanalyse uitgevoerd. Omdat in de mineralenwetgeving ook maxima voor fosfaatoverschotten zijn gegeven, wordt in hoofdstuk 5 bekeken hoe hoog deze fosfaatoverschotten zijn en of ze een beperkende factor vormt voor de vaststelling van het maximale gebruik van stikstof via dierlijke mest.

De conclusies van de bedrijfsberekeningen worden gegeven in hoofdstuk 6. Hoofdstuk 7 bevat een beschrijving van de gebruikte bedrijfsmethoden. De figuren waarnaar in de tekst wordt verwezen zijn aan het eind van deze annex in hoofdstuk 8 opgenomen.
2. **De processen op een graasveebedrijf**

Voordat de berekeningen verder worden beschreven, zullen een aantal belangrijke processen op een graasveebedrijf worden toegelicht:

- De stikstofexcretie uit dierlijke mest op een graasveebedrijf;
- De invloed van de veebezetniek op bemesting en voeding;
- De invloed van de veebezetniek op de verhouding weidemest/stalmest;
- De effecten van snijmalsteelt op een bedrijf.

2.1 Stikstofuitscheiding in dierlijke mest op een graasveebedrijf.

De totale hoeveelheid dierlijke mest per hectare is afhankelijk van de veebezetniek: hoe meer vee, hoe meer stikstof uit dierlijke mest. De meest eenvoudige benadering hiervan is de rechte lijn in figuur 2. Deze rechte lijn is de forfaitaire stikstofexcretie (Tamminga *et al.*, 2000) voor melkvee en jongvee, gecorrigeerd voor 10% ammoniakemissie.

Het verband tussen de veebezetniek en de stikstof in dierlijke mest is echter niet steeds rechtlijnig, maar wordt op een bepaald moment kromlijnig (Figuur 2). De stikstof in dierlijke mest stijgt minder snel dan op grond van het aantal dieren verwacht mag worden. Dat heeft de volgende redenen:

- Het rechtlijnige deel van de grafiek: Meer dieren per hectare zorgen voor een toenemende vraag naar ruwvoer en dus ook naar eiwit (stikstof). Deze toenemende vraag kan men eerst opvangen door extra bemesting. Die extra bemesting leidt tot een hogere grasopbrengst en hogere stikstofgehalten in het ruwvoer. Daardoor stijgt de N-uitscheiding zelfs iets sneller dan op grond van de rechte lijn verwacht mag worden. De dieren krijgen meer stikstof in hun rantsen dan op basis van voedernormen nodig is. Door de hogere aanvoer van kunstmest stijgt ook het stikstofoverschot van het bedrijf.

- De afbuiging van de rechte lijn: Als de veebezetniek hoger wordt, is verhoging van bemesting niet meer zinvol (als het bedrijfseconomisch optimum is bereikt) of niet meer toegestaan (als het maximaal toelaatbare overschot is bereikt). Het bedrijf is dan niet meer zelfvoorzienend in ruwvoer. Om aan de stijgende voerbehoeften te voldoen, wordt extra ruwvoer aangekocht. In bijna alle gevallen is dat snijmuis. Dat is eenvoudig in grote hoeveelheden van uniforme kwaliteit verkrijgbaar. Snijmuis is een eiwitarm ruwvoer, waardoor het stikstofgehalte van het voederrantsen in de stalperiode lager wordt. De eiwitbehoeften van de dieren is nog steeds gedekt. Ook in de weideperiode daalt het stikstofgehalte van het rantsen. Bij een hoger wordende veebezetniek moet worden overgeschakeld van onbeperkt naar beperkt weiden met bijvoeding van snijmuis tijdens de weideperiode. Door het lagere stikstofgehalte in zowel het zomer- als het winterrantsen daalt de stikstofuitscheiding per dier. Door de hogere veebezetniek stijgt de totale stikstofuitscheiding per hectare nog wel.

- Een volgende rechtlijnige fase: op een bepaald moment is er zoveel eiwitarme snijmuis in het rantsen opgenomen dat de stikstofvoorziening van het vee te laag dreigt te worden. De regels voor de eiwitvoorziening zijn gebaseerd op Tamminga *et al.* (1995). Dan wordt een deel van het krachtvoer (met 21 gram N per kg) vervangen door krachtvoer met een extra hoog eiwitgehalte (55 gram N per kg). De stikstofuitscheiding per dier daalt dan niet meer. Door de hogere veebezetniek stijgt de stikstofuitscheiding per hectare wel. Deze tweede lineaire fase zit in het rechterdeel van Figuur 2.
De overgang van extra bemesting naar voeraankoop is afhankelijk van productiviteit van de grond en mogelijkheden voor extra bemesting. Droge gronden hebben een lagere productiviteit (het vochttekort leidt tot groeivermindering) en een kleinere mogelijkheid voor kunstmesttoediening (op de droge gronden is een lager MINAS-overschot toegestaan). Daarom buigt de lijn van de stikstofuitscheiding op de droge gronden eerder af dan de lijn van de vochtthoudende gronden. Als droge gronden worden beregendi, blijft het toegestane stikstofoverschot gelijk, maar wordt er wel meer gras geproduceerd op het eigen bedrijf. De stikstofexcretie buigt daardoor iets later af dan op de droge gronden zonder beregendi.

In de praktijk wordt vaak een hogere stikstofopname en dus ook een hogere stikstofuitscheiding door het vee gerealiseerd. Dat is een gevolg van (te) hoge bemesting van weidegras en het inscharen van het melkvee in jong, eiwitrijk gras. Daarnaast wordt door veel veehouders nog een hoge eiwitovermaat nagestreefd als een vorm van “verzekering” tegen eiwittekorten. Door de mineralenwetgeving zal de eiwitovermaat in de voeding op bedrijven sterk worden beperkt en uitkomen bij de in deze berekeningen gebruikte waarden.

2.1.1 Waarom is bemesting aantrekkelijker dan voeraankoop?
Als de bemesting dusdanig hoog is dat de opbrengstverhoging slechts klein is, is het bedrijfseconomisch aantrekkelijker om ruwvoer aan te kopen. Uit bedrijfseconomisch oogpunt ligt de optimale bemesting rond de 350 kg N per ha per jaar (Unwin & Vellinga, 1994; Vellinga & André, 1999). De bijbehorende stikstofoverschotten liggen dan rond de 300 kg N per ha. Onder dit bedrijfseconomisch optimum van 350 kg N per ha kost vermindering van de bemesting en aankoop van ruwvoer altijd geld (Mandersloot, 1993). Veehouders zullen daarom altijd streven naar een zo hoog mogelijke eigen ruwvoerproductie. Door verhoging van de stikstofprijs (hetzij door duurdere kunstmest, hetzij door een heffing boven een zeker overschot zoals MINAS doet) zal het bedrijfseconomisch bemestingsoptimum op het niveau van de nagestreefde mineralenoverschotten komen te liggen. In dat geval zullen veehouders hun bemesting naar beneden bijstellen.
Vanuit het oogpunt van mineralenefficiëntie op een bedrijf is aankoop van ruwvoer altijd aantrekkelijker dan de eigen teelt. Immers, de verliezen die bij de teelt ontstaan worden op percelen buiten het bedrijf gerealiseerd.

2.1.2 De uitwisseling van kunstmeststikstof en voerstikstof
Hiervoor is al aangegeven dat verhoging van de bemesting leidt tot een verhoging van de grasproductie. Die verhoging van de bemesting vindt plaats door aankoop van kunstmest stikstof. Het stikstofoverschot op het bedrijf neemt daardoor toe. Als de bemesting echter niet meer verhoogd kan worden, vanwege de mineralenwetgeving, moet er meer ruwvoer worden aangekocht. Door de groter wordende aankoop van ruwvoer gebeurt dan zelfs het omgekeerde: omdat er stikstof binnenkomt via aangekocht voer wordt de ruimte voor het gebruik van stikstof uit kunstmest kleiner.

De uitwisseling van kunstmest-stikstof en voerstikstof zal nader worden toegelicht. In formule luidt de mineralenbalans als volgt:

\[N_{over} = N_{km} + N_{voer} - N_{melk, vlees} \]
Als een bedrijf een te hoog stikstofoverschot heeft, is vermindering van de stikstofbemesting de meest efficiënte weg om het overschot te verlagen (Mandersloot, 1993). Door de vermindering van de stikstofbemesting en moet er meer voer (snijmais met name) worden aangekocht. Daardoor wordt een deel van de vermindering door lagere bemesting weer teniet gedaan. Een verlaging van de bemesting met 10 kg N leidt, afhankelijk van de omstandigheden, tot een vermindering van het stikstofoverschot van 6 tot 8 kg N per ha, dus een rendement van 60 tot 80 %. Om het overschot dus met 10 kg N te verlagen, moet de bemesting dus met 13 tot 16 kg N worden verlaagd. Als de lagere voerproductie op het eigen bedrijf wordt opgevangen door de aankoop van eiwitrijke graskuil zal de efficiëntie echter duidelijk lager liggen dan de 60 tot 80% die hiervoor is genoemd.

Het proces van uitwisseling van voerstikstof en kunstmeststikstof treedt ook op als een (te) hoge stikstofvoorziening van het vee wordt nagestreefd of als door slecht management de voeraankopen groter zijn dan strikt nodig. De extra stikstofaanvoer via ruw- en krachtvoer moet dan worden gecompenseerd met kunstmest om het stikstofoverschot niet te hoog te laten worden.

2.2 De invloed van de veebezetting op de verhouding weidemest/stalmest

Meer dieren per hectare betekent ook een grotere behoefte aan weidegras op dezelfde oppervlakte. Er is dus minder weidegras per dier beschikbaar. Omdat er bij lage veebezetting veel meer gras groeit dan voor beweiding nodig is, zal bij het stijgen van de veebezetting nog wel op dezelfde wijze geweid kunnen worden. Op een bepaald moment is er echter te weinig gras voor het vee. Dan wordt er extra (geconserveerde ruwvoer) aan de dieren verstrekt. Om te zorgen dat ze dat ruwvoer kunnen opnemen worden de dieren ’s nachts op stal gehouden. Bij een verder stijgende veebezetting moet de hoeveelheid bijvoeding verder worden verhoogd. Op een bepaald moment is de noodzakelijke bijvoeding echter zo hoog dat er nauwelijks meer tijd over is voor beweiding. Dan blijven de dieren de gehele weideperiode op stal.

Bij de overgangen van het ene beweidingssysteem naar het andere (eerst van dag en nacht weiden naar alleen overdag en tenslotte naar opstellen), neemt de hoeveelheid weidemest relatief en absoluut af. Relatief omdat van de geproduceerde hoeveelheid mest steeds meer op stal wordt geproduceerd. Absoluut omdat de afname van weidemest door de mindere beweiding veel sterker is dan de toename door het grotere aantal dieren.

2.3 De invloed van snijmais op het bedrijf

Op veel bedrijven op de zandgronden wordt snijmais geteeld. Snijmais is een gewas met een hoge productie en een laag eiwitgehalte. Het is daarmee een goede aanvulling op het eiwitrijke gras en daarom een zeer gewaardeerd ruwvoer. De teelt van dit voedergewas is in het verleden gegaan met grote hoeveelheden drijfmest en grote stikstofverliezen. Recent onderzoek heeft aangetoond dat een matige bemesting, rijenbemesting en de toepassing van vanggewassen, een schone maïs teelt zeer wel mogelijk is (Schröder, 1998).
Waar snijmais wordt geteeld, kan geen gras groeien. De mogelijkheden om te kunnen weiden met het vee worden dus kleiner bij de teelt van snijmais. Zie hiervoor ook de annex over beweiding.

2.4 Illustratie van de beschreven processen

Voor de illustratie van de processen wordt gebruik gemaakt van berekeningen met het model N-stroom.

In figuur 3 staat op de horizontale as de hoeveelheid N die met dierlijke mest op de bodem gebracht wordt. Het MINAS stikstofoverschot staat op de verticale as. De punten staan in groepen van 6 bijeen. De twee zwarte horen bij een weidemestaandeel van 0 % (stalvoeding), de grijze bij een weidemestaandeel van 25 % (vergelijkbaar met beperkt weiden) en de witte bij een weidemestaandeel van 50 % (vergelijkbaar met onbeperkt weiden). Van de beide punten met dezelfde kleur is de bovenste de situatie met 75 % stikstofvoorziening op het eigen bedrijf. Het laagste is het punt met 50 % eigen stikstofvoorziening.

Een hogere veebezetting leidt tot een hoger stikstofoverschot, tenzij dit overschot aan banden wordt gelegd.

Figuur 3 illustreert dat een stijgende stikstofproductie via dierlijke mest, samenhangend met een hogere veebezetting, tot een hoger stikstofoverschot leidt. Bij een hogere veebezetting stijgt namelijk de stikstofbehoeftte van de veestapel. Als de zelfvoorzieningsgraad voor N gelijk blijft (in de berekeningen vastgezet op 50% en 75 %), dan moet de N-toediening via kunstmest worden verhoogd. De bemesting is dus resultante in deze berekening. Als, zoals in MINAS het geval is, de bemesting niet mag worden verhoogd, zal bij een stijgende veebezetting de zelfvoorzieningsgraad afnemen. Het stikstofoverschot zal dan niet toeneemen. In de figuur is dat te zien door bij 250 kg N uit dierlijke mest het hoogste open bolletje te nemen (50 % weidemest en 75 % zelfvoorziening). Het stikstofoverschot is daarbij 200 kg per ha. Ga van daaruit naar het laagste open bolletje bij 290 kg N uit dierlijke mest (langs de getekende pijl). Bij dat punt is de zelfvoorziening 50 %. Het stikstofoverschot is dan eveneens ongeveer 200 kg N per ha. Om dus het stikstofoverschot niet te verhogen is de noodzakelijke kunstmestkopen vervangen door voeraankoop.

De invloed van de beweiding op het stikstofoverschot is groot.

De beweiding, in feite de verhouding stalmete/weidemest heeft een grote invloed op het stikstofoverschot. De stalmeest draagt bij aan de grasproductie omdat de stikstof een bemestende waarde heeft. De weidemest levert een geringe bijdrage aan de grasproductie, zeker als de stikstoftoediening via stalmeest en kunstmest hoog is. Om toch voldoende ruwvoer te kunnen produceren bij een hoog aandeel weidemest, moet meer kunstmest worden aangevoerd. Het stikstofoverschot wordt daardoor groter. Daarom leiden de situaties met het hoogste aandeel weidemest (Onbeperkt weiden), tot de hoogste stikstofoverschotten. In de situatie waarbij niet wordt beweid (stalvoeding) en dus 100 % stalmeest aanwezig is, is de stikstofbenutting van de dierlijke mest het grootst. De kunstmestkopen zijn daar het laagst en daarmee ook de overschotten.

Uit figuur 3 bleek al zeer sterk de invloed van het aandeel weidemest in het totale gebruik van dierlijke mest. Om dat aspect beter te belichten is in figuur 4 het verband
tussen de stikstofuitscheiding tijdens de beweiding en het stikstofoverschot weergegeven. Bij Stalvoeding (de situatie zonder beweiding) liggen alle punten links in de figuur. De variatie wordt dan veroorzaakt door de veebezetting, het aandeel snijmais en de zelfvoorzieningsgraad. Bij de situatie met 25 en 50 % weidemest is een traject aan stikstofexcreties te zien. Dat traject wordt veroorzaakt door de veebezetting en de aanvullende kunstigestift. Immers, hoe meer vee, hoe groter de dierlijke stikstofproductie met dierlijke mest. Hoe meer bemesting, hoe hoger het stikstofgehalte van het gras en hoe hoger de stikstofexcretie per koe. Het verband tussen de stikstofexcretie en het stikstofoverschot is zeer duidelijk. Het hoogste stikstofoverschot wordt gerealiseerd in de situatie met 50 % weidemest (Onbeperkt weiden).

De invloed van maisteelt.

In figuur 3 zijn situaties met alleen grasland en met een combinatie van grasland en maïsland weergegeven. Er is een stippellijn getrokken door punten met een gelijk aandeel weidemest en een gelijke stikstofzelfvoorziening bij alleen gras. De vergelijkbare punten met de combinatie gras en mais liggen ook bijna op die lijn. Dat geeft aan dat de invloed van een aandeel snijmais op het stikstofoverschot slechts beperkt is.
3. Stikstoftoediening per hectare grasland op graasveebedrijven

De praktische invulling van de eerder beschreven processen wordt besproken aan de hand van resultaten van het Bedrijfsbegrotingsprogramma Rundveehouderij (BBPR). In paragraaf 3.1 wordt op basis van de bedrijfsberekeningen de stikstoftoediening per perceel beschreven. De stikstofexcretie van het vee speelt daarbij een belangrijke rol. Deze is reeds apart toegelicht in paragraaf 2.1.

3.1 Stikstofgebruik op droge en vochtthoudende gronden

In figuur 5 is weergegeven welke hoeveelheid stikstof uit dierlijke mest en kunstmest per hectare wordt uitgescheiden en toegediend op vochtthoudende gronden als functie van de veebezetting. De verliesnorm van 180 kg N per ha is daarbij randvoorwaarde. De totale stikstoftoediening per hectare in de figuur geldt als bodembelasting. Eveneens is de emissie van ammoniak per hectare weergegeven. Uit de figuur is te zien dat bij een stijgende veebezetting de totale stikstoftoediening stijgt. Op een zeker moment neemt de stikstofgift niet meer toe, maar blijft constant. Deze wordt dan begrensd door het maximaal toelaatbare stikstofoverschot van MINAS van 180 kg N per hectare. De maximale stikstoftoevoer per hectare bedraagt ongeveer 450 kg. Tot een maximale veebezetting van 2,8 melkkoeien per ha blijft de toevoer op dat niveau. De stikstofproductie uit dierlijke mest bedraagt dan 360 kg per hectare.

De hoeveelheid weidemest stijgt tot een veebezetting van 1,8 mk per ha, daarna daalt ze ineens. Dat wordt veroorzaakt door een overgang van onbeperkt naar beperkt weiden. Daarna neemt de hoeveelheid N uit weidemest nauwelijks meer toe. Door de beperking van de kunstmestaanvoer wordt het grasland steeds minder bemest, daalt het stikstofgehalte van het gras en bij de hoogste veebezettingen wordt ook nog extra snijmais bijgevoerd. De dieren krijgen dus een steeds lager stikstofgehalte in het rantsoen.

De hoeveelheid stalmest stijgt gedurende het toenemen van de veebezetting, evenals de hoeveelheid ammoniakemissie. Het kunstmestgebruik stijgt bij de lage veebezetting nog wel, maar wordt al snel beperkt door het maximaal toelaatbare stikstofoverschot volgens MINAS. Daarna wordt ze door de groter wordende stikstofaanvoer uit ruwvoer steeds verder verkleind. Vanaf een veebezetting van 1,5 mk per ha kan het bedrijf al niet meer voldoende ruwvoer produceren en moet voer worden aangekocht.

Door de scherpere grenzen die MINAS stelt en door de lagere grasproductie op die gronden is de totale stikstoftoever lager dan op de vochtthoudende gronden. Op droge gronden is de totale stikstoftoediening maximaal 320 kg N, op de droge gronden met beregening (en een hogere stikstofonttrekking door het gras) is de maximale toevoer 350 kg N per ha. De bijbehorende maximale stikstofproducties uit dierlijke mest zijn dan 290 en 310 kg per hectare voor resp. de droge gronden zonder en met beregening.

3.2 Gevoeligheidsanalyse

3.2.1 Invloed van verschillende beweidingssystemen
In figuur 8 is de stikstofgift per hectare weergegeven bij verschillende beweidingssystemen voor droge en vochtthoudende gronden. Op beide gronden is er weinig verschil in stikstoftoever tussen beperkt en onbeperkt weiden. Op de droge gronden is voor stalvoeren een breed traject berekend. Daar blijkt dat de stikstoftoever per hectare hoger is dan bij beperkt weiden. Door de grotere efficiëntie waarmee het gras wordt benut, hoeft er niet veel N via voer te worden aangekocht en kan er vrij veel stikstof via kunstmest worden aangevoerd. Bij stalvoeren bestaat de dierlijke mest echter compleet uit stalmest en niet uit de inefficiënte weidemest. Bij onbeperkt en beperkt weiden zijn berekeningen gedaan tot de maximale mogelijke veebezetting. Bij stalvoeren is dat niet gedaan, omdat bij berekeningen voor de nitraatuitspoeling bleek dat de nitraatconcentraties laag waren.

3.2.2 Effecten van een hogere melkproductie
In figuur 9 is het effect van een hogere melkproductie op de stikstoftoever weergegeven. Koeien met een hogere melkproductie hebben een hogere vastlegging van stikstof in melk, maar ook een hogere opname van stikstof via voer. Er is weinig tot geen verschil in stikstofgebruik per hectare tussen de beide productieniveaus. Dat betekent dat bij een gelijke veebezetting een hogere melkproductie niet tot een hoger gebruik van stikstof leidt. Het maximaal toelaatbare overschot reguleert ook hier op dezelfde wijze de stikstoftoever.

3.2.3 Het effect van snijmais op graasdierbedrijven
Door de teelt van snijmais op graasdierbedrijven verminderen de beweidingsmogelijkheden omdat de oppervlakte gras afneemt. Daarnaast is het toegestane stikstofoverschot op snijmais lager dan op grasland en is de teelt van snijmais gevoelig voor nitraatuitspoeling. Vergelijking van situaties waarbij 0 % en 25 % van de bedrijfsopervlakte uit maïs bestaat, is uitgevoerd voor vochtthoudende gronden (figuur10). Daaruit blijkt dat de stikstoftoever per hectare op bedrijven met snijmais lager is dan op de bedrijven met alleen grasland. Dat wordt veroorzaakt door het lagere toegestane stikstofoverschot op de maïspercelen. Als de stikstofgift per hectare grasland apart wordt berekend, is deze goed vergelijkbaar met die van de bedrijven met alleen grasland.

3.2.4 De invloed van een hogere stikstofexcretie
De stikstofopname in het gebruikte model is voor melkvee 5 % lager dan wordt berekend door Ketelaars en van der Meer (1999). Voor jongvee ouder dan 1 jaar wordt een 10 % hogere stikstofexcretie berekend en voor kalveren (jonger dan 1 jaar) is de berekende excretie gelijk. De stikstofexcreties, zoals deze worden berekend door Tamminga et al. (2000) komen uit op een vergelijkbaar niveau als Ketelaars en van der Meer (1999).
Door de hier gehanteerde strikte toepassing van de voedernormen (Van Es, 1978; Tamminga et al., 1995) worden de dieren mogelijk erg efficiënt gevoerd. In de praktijk wordt een dergelijke efficiëntie momenteel nog nauwelijks gerealiseerd. Een eventuele hogere stikstoffbehoefte van melkvee dan waarmee in dit rapport is gerekend of een hogere stikstoffoortziening voor het vee dan noodzakelijk leidt in alle gevallen tot een hogere stikstofaanvoer via ruw- en krachtvoer. Om het stikstofoverschot niet te hoog te laten worden, moet dan de kunstmestgift worden vermindert. In paragraaf 2.1.2 (de uitwisseling van kunstmeststikstof en voerstikstof) is al aangegeven dat een vermindering van de kunstmestgift met 1 kg leidt tot een daling van het overschot met ongeveer 0,65 kg. Om het overschot dus 1 kg N te laten dalen, moet de bemesting dus dalen met 1/0,65 = 1,5 kg N. Dit is uitgewerkt in een voorbeeld (tabel 1)

Tabel 1. Stikstofaankoop via voer en kunstmest, stikstofoverschot en –excretie per ha en de totale stikstoffoedingen in de vorm van weidemest, stalmest en kunstmest in kg per ha voor een bedrijf op droge zandgrond.

<table>
<thead>
<tr>
<th></th>
<th>Lage stikstofuitscheiding</th>
<th>Hoge stikstofuitscheiding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veebezetting (mk/ha)</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>N-aankoop (ruw- en krachtvoer, kg/ha) (a)</td>
<td>174</td>
<td>213</td>
</tr>
<tr>
<td>N-aankoop kunstmest (kg/ha) (b)</td>
<td>77</td>
<td>38</td>
</tr>
<tr>
<td>N-afvoer (melk en vlees, inclusief diercorrectie, kg/ha) (c)</td>
<td>111</td>
<td>111</td>
</tr>
<tr>
<td>N-overschot (a + b – c)</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>N excretie per koe (incl. jongvee) (minus NH3)</td>
<td>121</td>
<td>132</td>
</tr>
<tr>
<td>N-excretie (minus NH3, kg/ha)</td>
<td>241</td>
<td>263</td>
</tr>
<tr>
<td>N-toevoer naar perceel (kg/ha)</td>
<td>77+241 = 318</td>
<td>38 + 263 = 301</td>
</tr>
</tbody>
</table>

In het voorbeeld is de stikstofopname per koe (inclusief jongvee) met ongeveer 13 kg verhoogd, bij een veebezetting van 2 mk per ha is dat 26 kg N per ha. In de formule voor de mineralenbalans wordt de aanvoerpost N\textsubscript{voer} dan met 26 eenheden verhoogd:

\[N_{\text{over}} = N_{\text{km}} + (N_{\text{voer}} + 26) - N_{\text{melk,vlees}} \]

Dat betekent dat het stikstofoverschot met 26 kg stijgt. Om dit te grote overschot te laten dalen, moet minder kunstmest worden aangevoerd. Door de lagere kunstmestgift wordt er minder gras geproduceerd en moet er meer voer worden aangekocht. Een daling van de kunstmestgift met 1 kg N per ha leidt tot een extra stikstofaanvoer via voer van ongeveer 0,35 kg. Per saldo resulteert dat in een daling van het stikstofoverschot met 0,65 kg N. Om het stikstofoverschot dus 26 kg te laten dalen, moet de kunstmestgift dus met ongeveer 26/0,65 = 40 kg N worden verlaagd. De stikstofaanvoer via voer wordt dus som van de extra stikstoffbehoefte (26 kg) vermeerderd met de extra N die nodig is om de verminderde kunstmestaanvoer te compenseren (40 x 0,35 = 14 kg N). In totaal is dat 40 kg N aankoop via voer. De nieuwe situatie is dan:

\[N_{\text{over}} = (N_{\text{km}} - 40) + (N_{\text{voer}} + 26 + 14) - N_{\text{melk,vlees}} \]
Het stikstofoverschot is dan weer op het toegestane niveau. De stikstofexcretie met dierlijke mest neemt in dat geval toe met ca. 23 kg N toe (er treedt 10 % verlies op door ammoniakemissie de extra stikstofvoorziening voor het vee). De stikstoftoevoer via kunstmest daalt echter ca. 40 kg N per ha. Per saldo zal het totale stikstofgebruik per hectare dus met 17 kg N afnemen. Op een totale stikstoftoevoer van 300 kg N voor de droge gronden is dat bijna 6 %.
Deze daling van de stikstofaanvoer per hectare treedt op in een situatie waar het toelaatbare stikstofoverschot per hectare al is bereikt.

3.2.5 Management-invloeden
De technische resultaten van BBPR zijn haalbaar voor bedrijven met een goed management (de Haan, 1998). Dat betekent dat er dus een groep bedrijven is waarvoor de resultaten te hoog gegrepen zijn. Wat gebeurt er bij de randvoorwaarde van MINAS op dergelijke bedrijven?
Om een ander management te simuleren zijn in BBPR de vervoordersverliesen verdrievoudigd. Daardoor wordt dus een groter deel van het ruw- en krachtvoer niet benut, maar gaat rechtstreeks naar de mest. Aanvullend daarop is alleen maar ruwvoer (graskuilk) aangekoend met een stikstofgehalte van 35 gram per kg droge stof en een lager VEM-gehalte dan de snijmais. Daardoor worden het stikstofgehalte in het rantsoen en de krachtvoerbehoefte verhoogd. In de berekening van de Commissie Tamminga worden de voeroverleden toegerekend aan de stikstofexcretie. Deze rekenwijze wordt ook in dit rapport gevolgd. Dit management wordt hier aangeduid met “slordig”, vanwege de hogere voeroverleden.
Bij lage veebezettingen, waar het maximaal toelaatbare stikstofoverschot nog niet wordt overschreden, leidt deze “slordige” variant tot een hoger stikstofoverschot. Dat komt door een kleiner ruwvoeroverschot en bij de iets hogere veebezettingen door een grotere kunstmestaanvoer. Er moet dan vanwege de hogere voeroverleden meer voer worden geproduceerd. Zodra het stikstofoverschot het toelaatbaar maximum bereikt, leidt de grotere stikstofaanvoer via voer tot een lagere kunstmestaanvoer in vergelijking met de basis werkwijze (figuur11). Zoals al is aangegeven in paragraaf 3.2.4, is er bij een hogere aanvoer van stikstof via ruw- en krachtvoer een lagere kunstmestaanvoer nodig.
Bij de “slordige” variant is de stikstofexcretie per hectare wel duidelijk hoger, zelfs hoger dan de forfaitaire waarden waarmee de commissie Tamminga rekent (Tamminga et al, 2000, figuur 12). Als vervolgens het stikstofgebruik via dierlijke mest en kunstmest wordt vergeleken met de stikstofexcretie per hectare voor de basissituatie en de “slordige” variant, dan blijkt dat deze laatste in elk geval niet tot een hogere stikstofgebruik per hectare leidt (figuur13). Ook in de “slordige”variant wordt de totale stikstoftoevoer per hectare begrensd door het maximaal toelaatbare stikstofoverschot.

Uit het voorgaande mag worden geconcludeerd dat het totale stikstofgebruik via dierlijke mest en kunstmest per hectare slechts in beperkte mate wordt beïnvloed door de stikstofexcretie van het vee en door een precieze bedrijfsoverd. De bedrijfseconomische resultaten zullen echter wel degelijk verschillen, maar vallen buiten het bestek van dit rapport.

Een belangrijk effect van de “slordige” variant is dat de maximale veebezetting waarbij nog beweiding mogelijk is, of waarbij mestafvoer nog niet noodzakelijk is,
veel lager ligt dan bij de basissituatie (figuur 11). Bij die lagere veebezetting hoort bij
de “slordige” variant echter wel een hoge stikstofexcretie (figuur 12).
Voor de droge gronden worden vergelijkbare effecten gevonden.

3.2.6 Invloed van ontwatering op de stikstoftoediening.
In de berekeningen is voor vochthoudende gronden uitgegaan van een zandgrond met
een Gt IV. Op deze grond treedt weinig droogteschade op en is geen sprake van
wateroverlast. Het effect van zandgronden met een betere en een slechtere ontwatering
op de stikstofaanvoer per hectare is weergegeven in figuur 14.
Op de drogere grond (een zandgrond met Gt V) is bij een lagere veebezetting van 1,6
mk per ha sprake van een hogere toevoer. Dat wordt geheel veroorzaakt door de
hogere bemesting die nodig is om voldoende eigen ruwvoer te winnen. Bij 1,6 mk per
ha is MINAS nog niet een beperkende factor. Bij de hogere veebezettingen (2,0 en 2,4
mk per ha) stelt MINAS al grenzen aan de bemesting, daar is het totale stikstofgebruik
per hectare lager dan bij de basissituatie. Voor de grond met een slechtere ontwatering
(Gt III, minder droogteschade, meer wateroverlast) is sprake van een gelijke of een
lager stikstofgebruik per hectare. De gelijke stikstoftoediening wordt gerealiseerd in
de situatie waarbij MINAS nog niet beperkend is voor de bemesting. Bij de
veebezetting van 2,0 en 2,4 mk per ha stelt MINAS al grenzen aan de bemesting en is
de totale stikstoftoediening lager.

4. Nitraatuitspoeiling op graasveebedrijven

4.1 Droge en vochthoudende gronden
droge gronden
In figuur 15 is de berekende nitraatconcentratie weergegeven voor elk systeem van
beweiding en voor stalvoeren. De bovenste lijn is voor onbeperkt weiden, de
middelste voor beperkt weiden en de onderste is voor stalvoeren. Op de horizontale as
is nu geen veebezetting meer gegeven, maar de stikstofexcretie per hectare.
Bij onbeperkt weiden is er sprake van een stijging tot boven het toegestane niveau van
50 mg nitraat per liter. Het systeem van dag en nacht weiden wordt op de droge
gronden echter weinig toegestaan.
Bij de lijn van beperkt weiden is er eerst sprake van een stijging tot het niveau van 50
mg nitraat per liter. Daarna stabiliseert het zich rond die waarde. Bij de twee meest
linkse punten van deze lijn is de veebezetting zo laag dat de voerbehoefte nog geheel
can worden gedekt via een de eigen teelt van gras (met het bijbehorende
kunstmestgebruik). Bij het derde punt van de lijn voor de droge gronden kan de
voerbehoefte niet meer geheel worden gedekt uit eigen teelt. MINAS begint dan te
werken en beperkt de aanvoermogelijkheden van kunstmest. Bij de situaties verder
naar rechts, met de hogere veebezettingen, wordt het gebruik van kunstmest steeds
verder beperkt en de aankoop van ruwvoer steeds verder vergroot. Door deze
vermindering van de kunstmestgift, het lagere stikstofgehalte in het weidegras en de
toenemende hoeveelheid bijvoeding met snijmuis daalt de stikstofbelasting per koe via
weidemest. Ondanks het grotere aantal dieren blijft de stikstofbelasting per hectare
ongeveer gelijk. Daardoor blijft ook de nitraatconcentratie in het bovenste grondwater
gelijk en blijft liggen rond de 50 mg per liter.
Bij stalvoeren is er eerst ook sprake van een stijging van de nitraatconcentratie. De totale stikstoftoediening per hectare stijgt nog steeds, maar ook de bemesting (bestaande uit de werkzame stikstof uit de dierlijke mest en uit de kunstmest) neemt nog toe. Het toelaatbare stikstofoverschot is nog steeds niet overschreden. Op het moment dat het toelaatbare stikstofoverschot wordt bereikt, gaat het kunstmestgebruik dalen. De totale stikstofhoeveer (de werkzame en niet-werkzame stikstof uit dierlijke mest en de stikstof uit kunstmest) blijft op een gelijk niveau. Omdat de bemesting op grasland (bestaande uit kunstmest en de werkzame stikstof uit de dierlijke (stal)mest) lager wordt, daalt ook de nitraatconcentratie in het bovenste grondwater.

vochthoudende gronden
Op de vochthoudende gronden is de nitraatconcentratie lager (figuur 16). Dat wordt veroorzaakt door de sterkere deminetrificatie van nitraat in de bovengrond. Van de hoeveelheid minerale N in de bodem gaat slechts 43 % als nitraat naar het bovenste grondwater (zie ook annex 4). Op de droge gronden is dat 83 %.

De stijging van de nitraatconcentratie op de vochthoudende gronden wordt in het linker deel van de lijnen voor onbeperkt en beperkt weiden veroorzaakt door een stijgend aantal dieren en een stijgend gebruik van kunstmest-N. De lijn van onbeperkt weiden stopt eerder omdat beweiding technisch niet meer mogelijk is. Bij beperkt weiden gaat de lijn een dalende tendens vertonen bij een stikstofexcretie van 260 kg N per hectare vlakt de lijn af. Dan dwingt MINAS een beperking van de kunstmestgift af. De daling in nitraatconcentratie die vervolgens optreedt wordt veroorzaakt door een beperking in de beweidingstijd van 20 naar 8 uur per dag, een toename van de hoeveelheid bijvoeding van snijmais en een dalende kunstmestgift. Omdat de stikstofhoeveer op de vochthoudende gronden op een hoger niveau ligt dan op de droge gronden is het effect van de dalende stikstofgift via kunstmest veel sterker.

4.2 Gevoeligheidsanalyse

4.2.1 Effect van beregening van droge gronden
In figuur 17 is voor situaties op droge gronden met en zonder beregening de nitraatconcentratie weergegeven. De grote vierkante blokken zijn de situaties met beregening. De nitraatconcentratie ligt op beregenende gronden lager omdat de stikstofonttrekking door het gras hoger is dan op de onberegende gronden. Wel gelden voor beide situaties dezelfde beperkingen ten aanzien van de stikstofoverschotten op het bedrijf.

4.2.2 Effecten van een hogere melkproductie
In figuur 18 is het effect van een hogere melkproductie weergegeven. Koeien met een hogere melkproductie hebben een hogere vastlegging van stikstof in melk, maar ook een hogere opname van stikstof via voer. Per saldo is de stikstofexcretie per dier hoger. Dat betekent dat verhoging van de melkproductie per koe bij een gelijke veebezettings leidt tot een hogere stikstofexcretie. Omgekeerd geldt dus dat bij een gelijke stikstofexcretie per hectare en een toenemende melkproductie de veebezettings daalt.

Als de nitraatconcentratie in het bovenste grondwater wordt uitgezet tegen de stikstofexcretie per hectare is er weinig verschil tussen de beide productieniveaus. Dat betekent dat bij een gelijke stikstofexcretie per hectare een hogere melkproductie niet tot een hogere nitraatconcentratie hoeft te leiden.
4.2.3 Het effect van snijmais op graasdierbedrijven.
Door de teelt van snijmais op graasdierbedrijven verminderen de beweidsningsmogelijkheden omdat de oppervlakte gras afneemt. Daarnaast is het toegestane stikstofoverschot op snijmais lager dan op grasland en is de teelt van snijmais gevoelig voor nitraatuitvoer. Vergelijking van situaties waarbij 0% en 25% van de bedrijfsoppervlakte uitmais bestaat, is uitgevoerd voor vochthoudende gronden (figuur 19). Daaruit blijkt dat de nitraatconcentratie per liter op bedrijven met snijmais lager of gelijk is aan die op de bedrijven met alleen grasland.

4.2.4 Het effect van een hogere stikstofexcretie per dier
In de berekende situatie met een hogere stikstofexcretie, die is weergegeven in tabel 1, is de stikstofexcretie op stal juist hoger en die in de weide nagenoeg gelijk. De nitraatuitvoer via urine zal dan bijna gelijk zijn aan de situatie met normale excretie. Door een lagere bemesting, zal echter de uitscheiding als gevolg van die bemesting wel wat lager zijn. Een hogere stikstofexcretie per dier leidt dan niet tot een hogere nitraatconcentratie in het bovenste grondwater.

Ook voor de situaties waarbij is gerekend met hogere stikstofexcreties en grotere voerverliezen, is de nitraatuitvoer niet sterker dan in de basis situatie. Door de grotere stikstofaanvoer via voer, is de kunstmestaanvoer lager bij de hogere veebezettingen. Daardoor daalt het stikstofgehalte van het gras. Tevens zal de directe uitscheiding via de urine afnemen. Bij de lagere veebezettingen is er sprake van een gelijke of een iets hoger kunstgrasgebruik, in die situaties zal de uitvoer gestegen worden. Door de lagere toegestane stikstofoverschotten op droge gronden, treedt het effect van een licht verhoogde kunstmestaanvoer al op bij een veebezetting van 1,2 melkkoeien per hectare. Als door een minder efficiënte beweiding, zoals het inscharen bij lage opbrengsten, de stikstofopname van de dieren wordt verhoogd, zal als gevolg van een hogere stikstofuitvoer in de urine de nitraatuitvoer uit urineplekken toenemen. Berekeningen geven aan dat een verhoging van het voerantvoer met 100 OEB leidt tot een verhoging van de nitraatconcentratie in het bovenste grondwater met 1 mg per liter. De hogere stikstofuitvoer door inefficiënt weiden wordt weer teniet gedaan door de lagere kunstgrasproductie. Per saldo leidt het niet tot een hogere nitraatuitvoer.

4.2.5 Effect van vroeger opstellen
In de annex (over beweiding) is al aangegeven dat de invloed van de latere urineplekken op de nitraatuitvoer groter is dan van urineplekken die eerder in het seizoen ontstaan. Door eerder opstellen zijn deze relatief ongunstige urineplekken te voorkomen. Daardoor kan de nitraatuitvoer worden beperkt en zal de nitraatconcentratie in het bovenste grondwater lager zijn. Veldonderzoek heeft aangetoond dat hoeveelheden minerale N in de bodem verminderd wordt door eerder opstellen (Titchen et al., 1992; Vellinga & Holshof, 1992). Door eerder opstellen daalt ook de nitraatconcentratie van het bovenste grondwater (Holshof, 2000). Op basis van de proeven zijn voor droge gronden berekeningen uitgevoerd (figuur 20). Opstellen van melkvee en jongvee per 1 oktober in plaats van 1 november resulteert in een daling van 3 tot 7 mg/l nitraat bij een veebezetting van resp. 1,0 tot 2,5 melkkoeien per hectare op een droge zandgrond met Gt VII. Het verder vervroegen van de
opstaldatum tot 1 september leidt tot een verdere daling van de nitraatconcentratie van 2 tot 5 mg per liter.

4.2.6 Invloed van ontwatering op de nitraatconcentratie.
Door de geringere denitrificatie op de zandgrond met een Gt V is de nitraatconcentratie in het bovenste grondwater iets hoger dan in de basissituatie met Gt IV (figuur 21). De waarde van 50 mg per liter wordt echter niet overschreden. Door de nattere omstandigheden bij de grond met Gt III treedt daar een sterkere denitrificatie op en is er sprake van lagere nitraatconcentraties in het bovenste grondwater vergeleken met Gt IV.

5. Fosfaatoverschotten op grasveebedrijven

5.1 Begrenzing van de stikstofexcretie via fosfaatoverschotten
Via het aangekochte ruwvoer komt ook fosfaat op het bedrijf. Per kilogram droge stof (snijmais) komt 4,3 gram fosfaat op het bedrijf. Het fosfaatgehalte van krachtvoer varieert van 9 tot ruim 18 gram per kg product. Door een juiste grondstoffenkeuze kunnen de fosfaatgehalten in het krachtvoer worden verlaagd. Het fosfaatgehalte kan dan variëren van 8.0 tot 12.6 gram per kg product. Door de hoge aankopen van ruw- en krachtvoer op bedrijven met hogere veebezettingen en de beperkte afvoer via melk en vlees, nemen de fosfaatoverschotten toe op de bedrijven.
Het verloop van de fosfaatoverschotten is weergegeven in figuur 22 en figuur 23, voor respectievelijk de droge en vochtthoudende gronden.
Het maximale fosfaatoverschot dat is toegestaan, bedraagt 20 kg per hectare. Dat wordt op de droge gronden bereikt in de situatie met normaal krachtvoer bij ongeveer 240 kg stikstofexcretie. Door aanpassing van het krachtvoergehalte kan dit worden opgerekt tot ongeveer 260 kg stikstofexcretie. In het voorgaande is aangegeven dat de teelt van snijmais veel voorkomt op de droge gronden. Het is een gewas met een efficiënt waterverbruik en een hoge droge-stofopbrengst. Daarbij komt nog dat op de droge gronden relatief veel wordt bergegend. Door berekening kan de aankoop van ruwvoer worden beperkt. Dat leidt tot lagere aanvoeren van fosfaat en dus ook tot lagere fosfaatoverschotten (figuur 24). In de situatie van berekening wordt het fosfaatoverschot van 20 kg per hectare pas overschreden bij een stikstofexcretie van 280 kg per hectare bij lage fosfaatgehalten in het krachtvoer.
Kortom, door berekening en maïsteelt kan het fosfaatoverschot op de droge gronden worden beperkt waardoor tot een stikstofgift via dierlijke mest van 280 kg N het fosfaatoverschot nog beneden de gestelde grenzen van MINAS blijft.
Op de vochtthoudende gronden is de aankoop van ruwvoer nog lager dan op de droge gronden die bergegend worden en wordt een fosfaatoverschot van 20 kg per hectare gerealiseerd bij stikstofexcreties van 310 en 330 kg voor normale respectievelijk lage fosfaatgehalten in het krachtvoer.

5.2 De invloed van ander management
Door een hogere stikstofexcretie per dier, zoals berekend in de “slordige” variant in paragraaf 3.2.5, neemt niet alleen de stikstofaanvoer via ruw- en krachtvoer toe. Ook de aanvoer van fosfaat neemt daardoor sterk toe. In figuur 25 is het fosfaatoverschot per hectare weergegeven bij een verlaagd fosfaatgehalte in het krachtvoer voor de basissituatie en voor de “slordige” variant. Het toelaatbaar fosfaatoverschot van 20 kg
per hectare wordt voor beide varianten bij een zelfde stikstofexcretie per hectare bereikt. Bij de “slordige” variant is dat al bij 1,7 melkkoe per hectare. Bij de basissituatie gebeurt dat pas bij 2,5 melkkoe per hectare.

6. Conclusies

Een stijgende veebezetting leidt tot een hogere stikstofuitscheiding per hectare. Het verband tussen stikstofuitscheiding per hectare en de veebezetting is echter niet rechtlijnig.
Door verlaging van de bemesting en de aankoop van (eiwitarm) ruwvoer kan het stikstofoverschot worden verlaagd.
Hoe meer beweiding, hoe groter het stikstofoverschot. Bij hoge veebezettingen is weiden slechts in beperkte mate mogelijk.

De stikstoftoediening naar grasland in de vorm van weidemest, stalmest en kunstmest bedraagt op droge en vochtthoudende gronden respectievelijk 320 en 450 kg N. Als de droge gronden worden beregend, bedraagt de stikstoftoediening per hectare maximaal 350 kg N per ha.

De stikstofgift per hectare wordt hoofdzakelijk bepaald door de regulering van het stikstofoverschot en is weinig gevoelig voor een hogere melkproductie per koe, wijziging in beweidingssysteem, de teelt van mais op het bedrijf en minder efficiënte bedrijfsvoering. Een hogere stikstofexcretie (en bijbehorende stikstofbehoefte per dier) leidt bij hogere veebezettingen tot een lichte daling van het totale stikstofgebruik via weidemest, stalmest en kunstmest.

De nitraatconcentratie in het bovenste grondwater bereikt op vochtthoudende gronden een maximale waarde van 47 mg per liter. Op de droge gronden wordt een maximale waarde van 51 mg per liter bereikt. Dit geldt voor het systeem van beperkt weiden. Het hierbij behorende dierlijke mestgebruik bedraagt ca 360 kg/ha (vochtthoudende gronden) en 290 kg/ha bij droge gronden (ca 310 kg/ha indien deze worden beregend). De nitraatconcentraties in het bovenste grondwater zijn gevoelig voor het beweidingssysteem. Onbeperkt weiden op droge gronden leidt tot te hoge nitraatconcentraties in het bovenste grondwater. Stalvoeren leidt in alle gevallen tot lagere nitraatconcentraties in het bovenste grondwater.

De nitraatconcentratie is verder weinig gevoelig voor een hogere melkproductie per koe, een hogere N-excretie per koe, de teelt van mais op het bedrijf en een minder efficiënte bedrijfsvoering.

De maximale stikstoftoediening via dierlijke mest op grasland wordt begrensd door het maximaal toegestane fosfaatoverschot van 20 kg fosfaat per hectare. Op grond van de berekeningen en uitgaande van beperkte weidegang is een stikstofaanvoer via dierlijke mest van 260 en 330 kg per hectare mogelijk voor droge respectievelijk vochtthoudende gronden. Voor droge gronden die beregend worden is een stikstofgebruik via dierlijke mest van 280 kg per ha mogelijk. Deze waarden worden slechts weinig beïnvloed door een lagere efficiëntie in de bedrijfsvoering. In het geval van stalvoeren is een hogere stikstoftoediening per hectare mogelijk.
7. De gebruikte rekenmodellen.

7.1 Twee benaderingen: een theoretische en een praktische invalshoek.
Het tempo waarin bedrijven hun mineralenoverschotten moeten verlagen ligt erg hoog. Er zijn momenteel weinig bedrijven bekend die zich in het traject bevinden van de gebruiksnormen boven de 170 kg/ha zoals in de richtlijn bedoeld en die een MINAS-overschot realiseren zoals voor 2003 voorzien. Monitoring in het verleden heeft zich wel sterk gericht op verhogen van de mineralenefficiënties, maar is gebeurd bij relatief intensieve bedrijven en hoge niveaus van mineralenverliezen. Onderdelen van het bedrijf, zoals bijvoorbeeld bemesting, voeding en beweiding zijn wel uitgebreid onderzocht bij lage inputniveaus.
Om toch over het bedrijfsverband uitspraken te doen wordt gebruik gemaakt van rekenmodellen. Daarvoor staan twee modellen ter beschikking, welke onafhankelijk van elkaar zijn ontwikkeld.
Onderzoek naar bedrijfssituaties waarbij de nitraatconcentratie van het grondwater niet te hoog wordt, kan met behulp van beide rekenmodellen worden uitgevoerd. Een vergelijking van de resultaten kan de kwaliteit van de uitspraken over de nitraatuitvoer beïnvloeden versterken:
In beide rekenmodellen is de Goede Landbouw Praktijk (GLP) voor bemesting, voeding en graslandgebruik een uitgangspunt. De berekening van de stikstofkringloop in beide berekeningen vertoont goede overeenkomsten. Er zijn evenwel een aantal verschillen:
- Een aantal stikstofomzettingscoëfficiënten in BBPR zijn een resultaat van de bedrijfssituatie en het gekozen management (zoals bijvoorbeeld de voerstrategie, het beweidingssysteem, aanwendingstechniek van dierlijke mest en het bemestingsniveau) en dus geen invoerparameter. In het N-stroommodel van AB zijn omzettingscoëfficiënten de invoergevens.
- Omdat omzettingscoëfficiënten in BBPR resultante zijn van de bedrijfssituatie en het management, is er sprake van een zekere afhankelijkheid tussen die
coëfficiënten. In het N-stroommodel kunnen die coëfficiënten onafhankelijk van elkaar worden gevarieerd. Zo is de zelfvoorzieningsgraad in BBPR een resultante van de bedrijfsituatie en de gekozen bemesting. In het model N-stroom is de zelfvoorzieningsgraad een invoerparameter en is de bemesting een resultante.

- Door rekening te houden met de mogelijkheden van de bedrijfsvoering is er in BBPR niet altijd sprake van continue relaties. Door een vermindering van de bemesting kan het noodzakelijk zijn van beweigningssysteem te veranderen. Daardoor ontstaan “sprongen” in de relaties.

- De mate van detail tussen beide modellen verschilt sterk. BBPR is veel gedetailleerder dan het model N-stroom. Het berekent bijvoorbeeld omzettingen voor stal en weideperiode gescheiden, splits de veestapel uit in verschillende groepen en houdt rekening met het staltipe.

- Het belangrijkste verschil voor deze studie is de maatstaf voor nitraatuitspoeling. Het model N-stroom berekent de potentiële uitspoeling als een sluitpost op de stikstofbalans. Van het totale stikstofoverschot worden NH₃-verliezen en evt. vastlegging afgetrokken, de rest is potentiële uitspoeling. Het model BBPR van het PR berekent de hoeveelheid minerale stikstof (Nmin) in de laag van 0-100 cm aan het einde van het groeiseizoen en vertaalt deze naar nitraatuitspoeling en nitraatconcentraties in het bovenste grondwater. Deze berekeningen zijn gebaseerd op experimentele relaties tussen stikstoffinput, stikstofopname en Nmin in maaiproeven en op beweigningssonderzoek waar N in urineplekken intensief is gemeten.

Het BBPR is een programma waarmee in de praktijk realiseerbare bedrijven worden gesimuleerd. Het model wordt gebruikt door voorlichtingsdiensten, boekhoudkantoren en banken. In de praktijk blijkt dat de technische resultaten van het BBPR bij goed management realiseerbaar zijn (De Haan, 1998). Het model N-stroom is een abstracter model, waarin een aantal relaties sterk is vereenvoudigd. Het model is daardoor veel doortzichtiger en het biedt de mogelijkheid om de stikstofkringloop in een bedrijf te verkennen, daar waar experimentele relaties of praktijksituaties nog onvoldoende bekend zijn.

Omdat de modellen verschillende invalshoeken hebben, namelijk uitgaande van de praktische bedrijfsvoering (BBPR) of van theoretische relaties (N-stroom), is het aantal varianten dat doorgerekend wordt respectievelijk kan worden verschillend.

7.2 Uitgangspunten en rekenvarianten

7.2.1 Model N-stroom

Uitgangspunten:

- Er wordt geen dierlijke mest afgevoerd van het bedrijf;
- Het mineraloverschot volgens de MINAS-systematiek is geen randvoorwaarde.
- De veedichtheid is gebaseerd op enerzijds de voorlopige forfaitaire excretienormen van 110, 76 en 36 kg N voor respectievelijk een melkvee, een pink (1 – 2 jaar oud) en een kalf (<1 jaar) en anderzijds op een maximaal toelaatbare gebruiksnorm voor grasland en maïsland. De hoeveelheid stikstof met dierlijke mest is gevarieerd in de berekeningen.
- Er vindt geen vastlegging van N in grasland plaats;
- Er is uitgegaan van een melkproductie van 7340 kg/jaar;
Met het model N-stroom zijn berekeningen uitgevoerd voor:

- Variabele gebruikshoeveelheden stikstof via dierlijke mest op grasland: 170, 210, 250 en 290 kg N per ha. Voor maïsland wordt altijd een waarde van 170 kg N gehanteerd. De veebezetting is een resultante van deze gekozen aanvoerwaarden en de forfaitaire excreties.
- Drie beweidsintensiteiten. Deze intensiteiten zijn zodanig dat van de totale stikstofexcretie 0%, 25% en 50% terugkeert op het land via beweiding met vee.
- Twee bouwlandaandelen: 0% en 25%. Op het bouwland wordt snijmais geteeld voor de voorziening van eigen ruwvoer.
- Twee stikstofzelfvoorzieningsniveaus. De stikstofbehoeften van de veestapel wordt voor 50% en 75% bedekt uit de eigen voerproductie. De overige 50% resp. 25% wordt als elders geproduceerd voer aangekocht.

In totaal levert dit 48 verschillende bedrijfssituaties op.

Uitvoer van het model N-stroom:
- Het stikstofoverschot volgens MINAS.

7.2.2 BBPR
De volgende uitgangspunten zijn gehanteerd:
- Er wordt geen dierlijke mest afgevoerd van het bedrijf.
- Stikstofoverschotten volgens MINAS zijn randvoorwaarde. D.w.z. bedrijven realiseren stikstofoverschotten die gelijk zijn of lager dan de volgens MINAS toegestane waarden, rekening houdend met de bodemeigenschappen (vochthoudendheid).
- Er wordt onderscheid gemaakt tussen bedrijven op droge gronden en op “vochtende” gronden.
- Eventuele overschotten aan ruwvoer kunnen worden verkocht.
- Bedrijven streven bij een gegeven veebezetting naar een zo hoog mogelijke zelfvoorziening in ruwvoer, uiteraard binnen de grenzen van MINAS. Bij ruwvoeroverschotten wordt de bemesting zoveel mogelijk verlaagd om de verkoop van overschotten te beperken.
- De voeding van het vee is gebaseerd op de vastgestelde behoeften aan energie (van Es, 1978) en eiwit (Tammenga et al., 1995). Deze behoeften worden niet onderschreden.
- De berekening van de uitspoeling onder snijmais is inclusief de mogelijke uitspoeling door mineralisatie in de winterperiode.
- De netto mineralisatie op jaarbasis is nul. Er wordt dus evenveel N door de bodem geleverd uit organische stof als er wordt vastgelegd.
- De ammoniakemissie uit stal en opslag is 10% van de stikstofuitscheiding per dier (Ketelaars & Van der Meer, 1999)
- Er is uitgegaan van een melkproductie van 7340 en 9000 kg/jaar.
Met BBPR zijn berekeningen uitgevoerd voor:

- Een traject aan veedichtheden van 1.2 tot 2.8 melkkoeien per hectare (tabel 2). Bij elke koe is steeds rekening gehouden met 0.64 stuks jongvee. Voor het jongvee is beweiding en voeding steeds meegenomen in de berekeningen. Bij dat traject varieert de berekende excretie (gecorrigeerd voor ammoniakverliezen) van 120 tot ruim 300 kg per hectare.

- Drie beweidingssystemen: A) *Onbeperkt weiden*: dag en nacht weiden van melkvee en pinken van 1 mei tot 1 november, kalveren van half mei tot 1 september. B) *Beperkt weiden*: overdag weiden melkvee van 1 mei tot 1 november, pinken dag en nacht weiden van 1 mei tot 1 november en kalveren van half mei tot 1 september. En C) *Stalvoeding*: alle dieren op stal en voeren met geconserveerd ruwvoer.

- Voor een beperkt aantal varianten zijn twee bouwlandaandelen (0 en 25%) berekend. Op het bouwland wordt snijmais geteeld voor de voorziening van eigen ruwvoer.

- Alleen voor de droge gronden zijn de twee melkproductieniveaus doorgerekend.

Tabel 2. Het traject aan veebezettingen (in melkkoeien inclusief jongvee per hectare) dat is doorgerekend met het bedrijfsmodel BBPR.

<table>
<thead>
<tr>
<th>Beweidingssysteem</th>
<th>Veebezettingstraject (mk per ha)</th>
<th>Onbeperkt weiden</th>
<th>Beperkt weiden</th>
<th>Stalvoeren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bijvoeding in de weide</td>
<td>Geen</td>
<td>1.0 – 1.4</td>
<td>1.0 – 2.5</td>
<td>1.2 – 2.8</td>
</tr>
<tr>
<td>Droogtegevoelige grond</td>
<td>1.0 – 1.6</td>
<td>1.0 – 2.6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Droogtegevoelige grond met beregening</td>
<td>1.0 – 1.8</td>
<td>1.0 – 2.8</td>
<td>1.2 – 2.8</td>
<td></td>
</tr>
<tr>
<td>Vochthoudende grond</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In totaal zijn 63 bedrijfssituaties berekend.

De uitvoer van BBPR die van belang is voor dit rapport betreft:

- Het stikstofoverschot volgens MINAS;
- De gebruikte hoeveelheid kunstmest;
- De totale hoeveelheid N die via dierlijke mest en kunstmest op het land terecht komt;
- De terugkeer van N op het land via weidend vee (weidemest);
- De nitraatconcentratie in het bovenste grondwater;
- De mate waarin de ruwvoer- en de stikstofbehoeftte van het vee door eigen geteeld voer wordt gedekt (resp. de zelfvoorzieningsgraad voor ruwvoer en voor N).
8. Figuren
Figuur 1. Schematische weergave van de belangrijkste aan- en afvoerposten van de mineralenbalans van een graasdierbedrijf. Het verschil tussen de aanvoer en de afvoer is het overschot. Het overschot is door middel van normen voor het verlies per hectare cultuurg rond aan een maximum gebonden. De nitraatrichtlijn richt zich met name op de dierlijke mest en de kunstmest in het (kleine) kader.
Figuur 2. De totale stikstofexcretie per hectare (na aftrek van ammoniakemissie uit stal en opslag) op vochtende, droge en beregende droge gronden. Tevens is de forfaitaire stikstofexcretie gegeven.

stikstofexcretie rundvee
Figuur 3. Verband tussen het bedrijfsgemiddelde gebruik van N uit dierlijke mest en het MINAS stikstofoverschot bij verschillende beweidingsintensiteiten, bouwlandaandelen en stikstofzelfvoorziening.

Figuur 4. Het verband tussen de stikstofexcretie in de weide en het stikstofoverschot bij verschillende beweidingsintensiteiten, bouwlandaandelen en zelfvoorzieningsgraden.
Figuur 5. Gebruik van stikstof via weidemest, stalmeest en kunstmest per hectare grasland op vochthoudende gronden. Tevens is de ammoniakemissie weergegeven. Beweiding is steeds zoveel als mogelijk toegepast. In de figuur is van beneden naar boven aangegeven: weidemest, stalmeest, kunstmest en ammoniakemissie.
Figuur 6. Gebruik van stikstof via weidemest, stalmest en kunstmest per hectare grasland op droge gronden. Bij alle veebezettingen is beperkt weiden toegepast. In de figuur is van beneden naar boven aangegeven: weidemest, stalmest, kunstmest en ammoniak.

N-aanvoer droge gronden

Figuur 7. Gebruik van stikstof via weidemest, stalmest en kunstmest en de emissie van ammoniak per hectare grasland op droge beregende gronden. Beperkte weidegang in alle situaties. In de figuur is van beneden naar boven aangegeven: weidemest, stalmest, kunstmest en ammoniak.

N-aanvoer droge gronden met beregening
Figuur 8. Verband tussen de veebezetting en de stikstofoxidatie via dierlijke mest en kunstmest bij verschillende beweidingssystemen op droge en vochtige gronden. Figuur boven droge gronden, figuur onder: vochtige gronden. OW= onbeperkt weiden; BW= beperkt weiden; S= stalvoeding
Figuur 9. Verband tussen de veebezetting en de stikstof toediening uit dierlijke mest en kunstmest op droge gronden bij veestapels met een gemiddelde melkproductie van 7340 en 9000 kg melk per koe per jaar (beweidingsysteem: beperkt weiden).

Effect melkproductie, droge gronden

![Graph showing the relationship between livestock density and nitrogen application from animal manure and synthetic fertilizer on dry soils at livestock enclosures with an average milk production of 7340 and 9000 kg milk per cow per year (grazing system: limited meadows).]
Figuur 10. Verband tussen de veebezetting en de stikstoftoediening via dierlijke mest en kunstmest per hectare bedrijfsovervlakte op bedrijven met 100 % grasland en bedrijven met 75 % grasland en 25 % snijmais op vochthoudende gronden.
Figuur 11. Verband tussen de veebezetting en de stikstofgebruik via kunstmest per hectare bedrijfsoppervlakte op bedrijven met een goed management en een “slordig” management op droge en vochtthoudende gronden

Effect management, droge gronden

Effect management, vochtthoudende gronden
Figuur 12. Het verband tussen de stikstofexcretie per hectare en de veebezetting bij een forfaitaire exretie, een "netjes" management met scherpe voedernormen en "slordig" management met een hogere stikstofvoorziening voor het vee en hogere voerverliezen.
Figuur 13. Het verband tussen de stikstofgift via dierlijke mest en kunstmest per hectare en de veebezetting (boven) en de stikstofexcretie (onder) bij slordig en netjes werken op vochthoudende zandgronden
Figuur 14. De totale stikstofoediening uit dierlijke mest en kunstmest per hectare bij zandgronden met Gt III, IV en V voor de veebezettingen 1.6, 2.0 en 2.4 melkkoeien per hectare.
Figuur 15. Het verband tussen het gebruik van stikstof via dierlijke mest en de nitraatconcentratie in het bovenste grondwater bij verschillende beweidingssystemen op droge gronden.

vochthoudende gronden

Figuur 17. Het verband tussen het gebruik van stikstof uit dierlijke mest en de nitraatconcentratie in het bovenste grondwater bij beperkt weiden op droge gronden met en zonder beregening.

Invloed beregening
Figuur 18. Het verband tussen het gebruik van stikstof uit dierlijke mest en de nitraatconcentratie in het bovenste grondwater bij beperkt weiden op droge gronden bij een gemiddelde melkproductie van de veestapel van 7340 en 9000 kg per koe.

Invloed melkproductie

![Graph showing the relationship between nitrogen excretion and nitrate concentration in groundwater.](image-url)
Figuur 19. Het verband tussen het gebruik van stikstof uit dierlijke mest en de nitraatconcentratie in het bovenste grondwater bij maximale beweiding op vochtoudende zandgronden met 100 % grasland en met een snijmaisaandeel van 25 %.

effect mais bij maximale beweiding
Figuur 20. De nitraatconcentratie in het bovenste grondwater op droge zandgronden met een stikstofoverschot van 140 kg N en beperkt weiden tot 1 november, 1 oktober en 1 september (van boven naar beneden)

Effect eerder opstallen

Figuur 21. Het verband tussen stikstoftoediening via dierlijke mest en de nitraatconcentratie bij verschillende grondwatersituaties op vochthoudende gronden met Gt III, IV en V.

Effecten ontwatering
Figuur 22. Verband tussen het fosfaatoverschot (kg/ha) en de stikstofexcretie (kg/ha) voor droge gronden bij de situatie met standaardkrachtvoer en bij de situatie waarin een verlaging van het fosfaatgehalte van het krachtvoer is doorgevoerd.

Figuur 23. Verband tussen het fosfaatoverschot (kg/ha) en de stikstofexcretie (kg/ha) voor vocht houdende gronden bij de situatie met standaardkrachtvoer en bij de situatie waarin een verlaging van het fosfaatgehalte van het krachtvoer is doorgevoerd.
Figuur 24. Verband tussen het fosfaatoverschot (kg/ha) en de stikstofexcretie (kg/ha) voor droge gronden en droge gronden die beregend worden bij de situatie waarin een verlaging van het fosfaatgehalte van het krachtvoer is doorgevoerd.
Figuur 25. De fosfaatoverschotten bij toepassing van lage fosfaatgehalten in het krachtvoer op droge gronden bij de basissituatie (goed management of “netjes” werken) en bij een minder nauwkeurig management (“slordig” werken).
Annex 3. Voorbeelden van graasdierbedrijven die voldoen aan de verliesnorm en die meer stikstof via dierlijke mest gebruiken dan 170 kg/ha

1. Praktijkbedrijf op vochthoudende zandgrond (Noord Brabant)

Bedrijfsoppervlak 32 ha
- gras 78%
- maaís 22%

Veebezetting
- melkvee 1) 1.8 melkkoë/ha

N-gebruik Dierlijke mest 2) 317 kg/ha
N-gebruik Kunstmest 94 kg/ha
N-gebruik mest totaal 411 kg/ha

N-overschot MINAS 95 kg/ha
Toelaatbaar in 2003 (MINAS) 147 kg/ha

Beweeding: Beperkt weiden (ca. 8 uur per dag)

Nitraat in bovenste meter van het grondwater

bedrijfsgemiddeld: 35 mg/l (in 1997); 22 mg/l (in 1998); 5 mg/l (in 1999)

Gt-verdeling volgens Bodemkaart
- Gt III 6%
- Gt III* 10%
- Gt IV 82%
- Gt VI 2%

Dominante Gt: Gt IV
Bedrijf is matig gevoelig voor nitraatuitstoting

1) In 1998 behaalde 57 melkkoëen ook aanwezig: 34 kalveren, 27 stuks jongvee > 1 jaar en 8 vleeskoëen.
2) berekend op basis van forfaitaire N-excreties (voorlopige indicatieve waarden; IKC, 1999) melkkoëen 110 kg/dier; kalveren 36 kg/dier; jongvee en vleesvee > 1 jaar 76 kg/dier.
2. Proefbedrijf op droge zandgrond (De Marke)

Bedrijfsoppervlak: 55 ha
 - gras: 55%
 - maïs: 45%

Veebezetting
 - melkvee: 1,45 melkkoe/ha
 - jongvee: 1,0 stuks/ha

N-gebruik
 - Dierlijke mest: 228 kg/ha (79% stalmest; 21% weidemest)
 - Kunstmest: 68 kg/ha
 - via mest totaal: 296 kg/ha

N-overschot volgens MINAS: 92 kg/ha
Toelaatbaar in 2003 (MINAS): 104 kg/ha

Beweiding: Beperkt weiden (Siesta beweiding: 2x 4 = 8 uur per dag van 1/5-1/10)

Nitraat in bovenste meter van het grondwater

<table>
<thead>
<tr>
<th></th>
<th>93 t/m 97</th>
<th>95 t/m 97</th>
</tr>
</thead>
<tbody>
<tr>
<td>bedrijfsgemiddeld:</td>
<td>47 mg/l</td>
<td>55 mg/l</td>
</tr>
<tr>
<td>permanent grasland</td>
<td>60 mg/l</td>
<td>71 mg/l</td>
</tr>
<tr>
<td>grasland in rotatie (I)</td>
<td>-</td>
<td>49 mg/l</td>
</tr>
<tr>
<td>grasland in rotatie (II)</td>
<td>-</td>
<td>36 mg/l</td>
</tr>
</tbody>
</table>

Gt-verdeling van bedrijf
 - Gt V: 2%
 - Gt VI: 31%
 - Gt VII: 54%
 - Gt VIII: 12%

Dominante Gt: Gt VII
Bedrijf is zeer gevoelig voor nitraatuitspoeling

1) op basis van verliesnormen voor droge gronden

2) 3 jaar grasland gevolgd door 3 jaar bouwland

3) 3 jaar grasland gevolgd door 5 jaar bouwland
Annex 4. Vertaling van het stikstofoverschot volgens Minas naar een nitraatconcentratie in het bovenste grondwater

Bij de stappen die gezet moeten worden om van het stikstofoverschot (Minas) te komen tot een nitraatconcentratie in het bovenste grondwater wordt gebruik gemaakt van tabel 1. In onderstaande tekst zijn de relevanten stappen aangegeven met de regels A tot en met X.

De verliesnorm (A) geeft op bedrijfsniveau het verschil (in kg/ha stikstof) tussen de hoeveelheid stikstof die op het bedrijf is aangevoerd (door de landbouwer) en de hoeveelheid die is afgevoerd van het bedrijf. Deze verliesnorm (A) moet echter voor een aantal posten (B t/m E) gecorrigeerd worden om te komen naar de bodembelasting (F). Deze berekeningswijze is eveneens gebruikt door Bresser et al (1999). De gevolgde redeneerlijn is weergegeven in figuur 1.

Op grasland vindt denitrificatie plaats van stikstof in urineplekken (regel B). Deze wordt geschat op 25 kg N per ha per jaar (van Eck, 1995). Daarnaast is er sprake van ammoniakverliezen uit stallen (graslandbedrijf) en tijdens uitrijden (grasland en bouwland). Deze post (regel C) wordt geschat op 35 kg/ha (grasland) en 4 kg/ha (bouwland). Op grasland vindt (o.a. door klaver en vrijlevende stikstofbacteriën) in beperkte mate stikstofbinding plaats (D). Tot slot komt er stikstof via depositie op het land (E). De optelling van deze posten bij de verliesnorm (A) leidt tot de netto-bodembelasting (F).

Het is echter niet zo dat deze gehele hoeveelheid stikstof ook daadwerkelijk uitspoelt naar het grondwater. Op basis van een groot aantal praktijkmetingen aan zowel stikstofoverschot als nitraatconcentraties in het grondwater op thans gangbare bedrijven (Fraters et al, 1997) is berekend dat op grasland 43% (bandbreedte: 36-50%) en op bouwland 81% (bandbreedte: 68-83%) van de netto bodembelasting uitspoelt vanuit de wortelzone (in %: regel H tot en met J en in kg/ha stikstof: regel K tot en met M). In dit percentage is dus geen rekening gehouden met denitrificatie in de diepere bodemlagen.

Vooral voor grasland is dit percentage opmerkelijk laag, met andere woorden: de onverklaarde verliezen zijn relatief groot. Eventuele oorzaken hiervan kunnen zijn:

- gasvormige verliezen uit urineplekken zijn groter dan verwacht;
- ammoniakverliezen zijn in werkelijkheid groter dan nu wordt aangenomen;
- er treden naast ammoniakverlies nog andere gasvormige stikstofverliezen uit stal, weide en opslag plaats (m.n. N₂);
- ophoping van organische stikstof in de bodem;
- optreden van gasvormige stikstofverliezen in het plantsysteem (bijvoorbeeld emissie uit bladeren etc.).

Er is echter ook sprake van een aanzienlijk onzerkeerheidsmarge. Probleem hierbij is verder dat de huidige stikstofverschotten veel hoger zijn (circa factor 2) dan de verliezen die in de toekomst worden toegestaan. Op bouwland zijn de onverklaarde verliezen beperkt tot ca. 20% (bandbreedte: 17-32%). Dit geeft aan dat de oorzaak van de grote verliezen op grasland waarschijnlijk liggen in het grasland – diersysteem.

Verder is het zo dat na uitspoeling van stikstof uit de wortelzone nog denitrificatieverliezen optreden in het ondiepe grondwater (O). Deze zijn afhankelijk
van de grondwaterstand (Boumans et al., 1989). Voor Gt IV is de correctiefactor 0,43 (dus 57% verlies), voor Gt VII is deze factor 0,83 (dus 35% verlies). Onder gronden met Gt VIII is de factor 1,0: er is hier geen verlies. Deze Gt-klasse komt echter slechts beperkt voor in Nederland (in circa 4% van de landbouwgronden). In combinatie met het neerslagoverschot (van Drecht et al., 1998) (regel N) kan berekend worden wat de verwachte nitraaconcentratie in het bovenste grondwater (regels P-R). Hieruit blijkt dat gemiddeld genomen, de verwachte nitraaconcentratie onder grasland bij Gt IV gemiddeld 47mg/l bedraagt (range: 32-72) en bij Gt VII gemiddeld 51 mg/l (range: 37-70). Onder bouwland gemiddeld 48-53 mg/l (Gt IV en Gt VII). De minimaal verwachte concentratie is in alle gevallen lager dan 50 mg/l. De hier gegeven bandbreedten hebben twee oorzaken namelijk variaties in het percentage uitspoeling en variaties in het neerslagoverschot. Deze laatste oorzaak heeft de grootste bijdrage aan de bandbreedte. In tabel 1 is ook voor Gt VIII de verwachte nitraaconcentratie aangegeven (regels S-X), met bijbehorende waarden voor de correctiefactor en het neerslagoverschot.

Tabel 1. Het traject van de verliesnorm voor stikstof naar de nitraatconcentratie in het bovenste grondwater voor grasland en bouwland op een vochthouwende (Gt IV) en een droge (Gt VII) zandgrond. Tevens is de situatie bij Gt VIII gegeven (zeer droge zandgrond).

<table>
<thead>
<tr>
<th>Regel</th>
<th>Grootheid</th>
<th>Grasland</th>
<th></th>
<th>Bouwland</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vocht-</td>
<td>Droog</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>houdend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Verliesnorm (Minas)</td>
<td>kg/ha N</td>
<td>180</td>
<td>140</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>Denitrificatie urineplekken</td>
<td>kg/ha N</td>
<td>-25</td>
<td>-25</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Ammoniakemissie</td>
<td>kg/ha N</td>
<td>-35</td>
<td>-35</td>
<td>-4</td>
</tr>
<tr>
<td>D</td>
<td>Stikstofbinding</td>
<td>kg/ha N</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>Stikstofdepositie</td>
<td>kg/ha N</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>F</td>
<td>Bodembelasting (netto)</td>
<td>kg/ha N</td>
<td>153</td>
<td>114</td>
<td>121</td>
</tr>
<tr>
<td>G</td>
<td>Stikstofuitspoeling (%)</td>
<td>%</td>
<td>36%</td>
<td>36%</td>
<td>68%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>68%</td>
<td>68%</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>Minimum</td>
<td>%</td>
<td>43%</td>
<td>43%</td>
<td>81%</td>
</tr>
<tr>
<td>I</td>
<td>Gemiddelde</td>
<td>%</td>
<td>50%</td>
<td>50%</td>
<td>83%</td>
</tr>
<tr>
<td>J</td>
<td>Maximum</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stikstofuitspoeling (kg/ha)</td>
<td>kg/ha N</td>
<td>55</td>
<td>41</td>
<td>82</td>
</tr>
<tr>
<td>K</td>
<td>Minimum</td>
<td>kg/ha N</td>
<td>66</td>
<td>49</td>
<td>98</td>
</tr>
<tr>
<td>L</td>
<td>Gemiddelde</td>
<td>kg/ha N</td>
<td>77</td>
<td>57</td>
<td>100</td>
</tr>
<tr>
<td>M</td>
<td>Maximum</td>
<td>kg/ha N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Neerslagoverschot (min-max;</td>
<td>mm</td>
<td>268</td>
<td>355</td>
<td>387</td>
</tr>
<tr>
<td></td>
<td>districtsgemiddelde)</td>
<td></td>
<td>(201-328)</td>
<td>(297-404)</td>
<td>(320-443)</td>
</tr>
<tr>
<td>O</td>
<td>Correctiefactor Gt IV en Gt</td>
<td>%</td>
<td>43%</td>
<td>83%</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td>VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Minimum</td>
<td>mg/l NO₃</td>
<td>39 (32)</td>
<td>42 (37)</td>
<td>40 (35)</td>
</tr>
<tr>
<td>Q</td>
<td>Gemiddelde</td>
<td>mg/l NO₃</td>
<td>47</td>
<td>51</td>
<td>48</td>
</tr>
<tr>
<td>R</td>
<td>Maximum</td>
<td>mg/l NO₃</td>
<td>54 (72)</td>
<td>59 (70)</td>
<td>49 (60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verwachte nitraatconcentratie</td>
<td></td>
<td>GT IV</td>
<td>GT VII</td>
<td>GT IV</td>
</tr>
<tr>
<td></td>
<td>bij Gt IV en VII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Neerslagoverschot VIII (min-max</td>
<td>mm</td>
<td>380</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td></td>
<td>districtsgemiddelde)</td>
<td></td>
<td>(324-427)</td>
<td>(414-519)</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Correctiefactor Gt VIII</td>
<td>%</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Verwachte nitraatconcentratie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gt VIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Minimum</td>
<td>mg NO₃/l</td>
<td>48 (43)</td>
<td>52 (47)</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Gemiddelde</td>
<td>mg NO₃/l</td>
<td>57</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>X</td>
<td>Maximum</td>
<td>mg NO₃/l</td>
<td>66 (78)</td>
<td></td>
<td>63 (72)</td>
</tr>
</tbody>
</table>