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Abstract 

Manual for QMRAspot, a computational tool for the assessment of 
quantitative microbial risks of drinking water consumption. 
 
The RIVM has developed a user-friendly computational tool (QMRAspot) to 
calculate the risk of becoming infected by pathogenic microorganisms in drinking 
water. This report is a manual in which it is explained how QMRAspot 
(Quantitative Microbial Risk Assessment from surface water to potable drinking 
water) can be used, and what the underlying models are. The tool is mainly 
aimed at pathogenic microorganisms in drinking water produced from surface 
water. The manual applies to the most recent tool version (2.0, September 
2014). 
 
The Dutch drinking water companies that produce drinking water from surface 
water and groundwater are obliged by law to demonstrate that less than one per 
then thousand persons per year acquire an infection by consumption of unboiled 
drinking water. QRMAspot was originally developed for the Netherlands, but can 
be applied worldwide by drinking water companies, researchers and policy 
makers.  
 
This manual describes in detail how data for the risk assessments can be 
provided, how these data are analysed statistically, and how the risk 
assessments can be conducted in a consistent and transparent manner. In 
addition, two frequently occurring applications of QMRAspot are discussed. The 
first application demonstrates the effect on the infection risk of a high 
contamination at locations where the drinking water companies abstract surface 
water. The second application demonstrates to what extent one single sample, 
in which microorganisms were detected, contributes to the infection risk. 
 
Keywords: Quantitative Microbial Risk Assessment; tool; drinking water; index 
pathogen  
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Publiekssamenvatting 

Handleiding voor QMRAspot, een rekenprogramma voor het schatten 
van kwantitatieve microbiologische risico’s van drinkwater. 
 
Het RIVM heeft een gebruiksvriendelijk computerprogramma (QMRAspot) 
ontwikkeld dat de kans berekent op infecties door ziekteverwekkende micro-
organismen in drinkwater. Het onderhavige rapport is een handleiding, waarin 
wordt uitgelegd hoe QMRAspot (Quantitative Microbial Risk Assessment from 
surface water to potable drinking water) gebruikt kan worden en wat de 
onderliggende rekenmodellen zijn. Het model is voornamelijk bedoeld voor 
ziekteverwekkende micro-organismen in drinkwater dat uit oppervlaktewater 
wordt gewonnen. De handleiding is van toepassing op de meest recente 
modelversie (2.0, september 2014). 
 
De Nederlandse drinkwaterbedrijven, die drinkwater produceren uit 
oppervlaktewater en grondwater, zijn wettelijk verplicht om aan te tonen dat 
minder dan één op tienduizend personen per jaar een infectie oploopt door de 
consumptie van ongekookt drinkwater. QRMAspot is oorspronkelijk ontwikkeld 
voor Nederland, maar kan wereldwijd worden toegepast door 
drinkwaterbedrijven, onderzoekers en beleidsmakers.  
 
In deze handleiding wordt in detail beschreven hoe gegevens voor de 
risicoschattingen kunnen worden aangeleverd, hoe deze gegevens statistisch 
worden geanalyseerd en hoe de risicoschatting op consistente en transparante 
wijze kan worden uitgevoerd. Ook worden twee veel voorkomende toepassingen 
van QMRAspot besproken. De eerste toont het effect op het infectierisico van 
een hoge besmettingsgraad op locaties waar de drinkwaterbedrijven het 
oppervlaktewater onttrekken. De tweede toepassing demonstreert in welke mate 
één enkel monster waarin micro-organismen zijn aangetoond, bijdraagt aan het 
infectierisico.  
 
Kernwoorden: Kwantitatieve microbiologische risicoschatting; tool; drinkwater; 
indexpathogeen 
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Summary 

QMRAspot is an interactive computational tool that has been designed for 
conducting Quantitative Microbial Risk Assessment (QMRA) for drinking water 
produced from surface water. This manual explains  how to use QMRAspot as 
well as the underlying models in detail. QMRA results are explained on the basis 
of a reference data set. An example with the effect of a peak concentration in 
the source water and an example with treatment data consisting of only non-
detects or only one positive sample in the effluent of the treatment step are 
shown. The manual applies to QMRAspot version 2.0 (1/9/2014). 
 
In the Netherlands, drinking water companies are legislatively obligated to 
demonstrate compliance to not exceeding an infection risk of one per ten 
thousand persons per year from consumption of drinking water. This has to be 
demonstrated every four years for four index pathogens: Enterovirus, 
Campylobacter, Cryptosporidium and Giardia. QMRAspot has been designed to 
conduct QMRA for these index pathogens.  
 
This report explains how QMRAspot assesses the infection risk and addresses 
possible applications. A comprehensive description of QMRAspot version 1.0 has 
been published by Schijven et al. (2011), which is fully cited in this manual, 
supplemented with explanation in more detail and examples, and updated to 
version 2.0 of QMRAspot. QMRAspot was originally developed in Mathematica 
8.0.4 (Wolfram, Inc, Champaign IL, USA). The current QMRAspot version 2.0 
has been updated to run with version 9.0.1 of Mathematica, Player Pro and CDF 
Player. QMRAspot version 2.0 has been extended to include a fifth optional 
pathogen, distribution parameter values for recovery can be set by the user, a 
dose response model can be selected, and dose response parameter values can 
be set by the user for the fifth pathogen. Raw data for QMRA to estimate the 
concentration of pathogens in the source water and to estimate removal of 
pathogens and/or indicator microorganisms by drinking water treatment must be 
stored in an Excel spreadsheet. These data can be read by QMRAspot with 
Mathematica or Player Pro. QMRAspot fits distributions to these data. In addition 
and/or instead, distribution parameter values can be set interactively in 
QMRAspot. A QMRA can thus be conducted without analyzing raw data as well. 
With the free CDF Player, data cannot be read from a spreadsheet, but QMRA 
can still be conducted by setting parameter values.  
A QMRA report can be generated for each of the index pathogens, and this 
report can be saved as a Mathematica notebook and/or pdf file. 
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1 Introduction 

1.1 Drinking water legislation 

The World Health Organization (WHO) Guidelines for Drinking Water (WHO 
2011) outline a preventive management framework for safe drinking water 
entailing health based targets, system assessment from source through 
treatment to the point of consumption, operational monitoring of the control 
measures in the drinking water production, management plans documenting the 
system assessment, and monitoring plans and a system of independent 
surveillance that verifies that the above are operating properly.  

In line with the WHO Guidelines, the Dutch Drinking Water Act (2009) prescribes 
that tap water provided by the owner to consumers and other customers should 
not contain micro-organisms, parasites or substances to such numbers per 
volume or concentrations that these may comprise detrimental public health 
effects (Article 21). In the Dutch Drinking Water Act (2011), this demand is 
translated  into the following quality requirements: 
1) Absence of E. coli and enterococci in 100 ml of drinking water; 
2) (Entero)viruses, Cryptosporidium, Giardia and Campylobacter should not 
exceed an infection risk of one infection per 10,000 individuals per year.  
In the Dutch Drinking Water Act (2011), no specific directions are given on how 
to perform this so-called Quantitative Microbial Risk Assessment (QMRA). To 
guide the owner of the provided tap water and the Inspectorate body on how to 
perform QMRA, the Inspectorate Guideline 5318 (Anonymous, 2005) was 
drafted in close consultation between the government (Environmental 
Inspectorate), the National Institute of Public Health and the Environment 
(RIVM), Bilthoven, the Netherlands, and the drinking water producers. The 
general principle of the Inspectorate guideline is to balance health protection 
and public funds.  
 

1.2 General explanation of QMRA 

The required quantitative risk assessment is based on source water quality and 
the efficiency of the applied treatment. In addition, data are needed concerning 
tap water consumption and the dose-response relation of the specific pathogen 
and its host. Risk assessment for exposure to pathogenic microorganisms in 
drinking water was described by Teunis et al., 1997, Haas et al., 1999 and Haas 
and Eisenberg, 2001, the ILSI framework (Benford, 2001) and Medema et al. 
(2003). These publications and the development of risk based approaches by the 
WHO (2004) served as the basis for the specification of QMRA in Inspectorate 
Guideline 5318. It must be emphasized that risk assessment is an iterative 
process which is directed by practical and theoretical progress.  
 

1.3 Application of QMRA by drinking water companies 

To demonstrate microbial safe drinking water, Dutch drinking water suppliers 
must conduct a QMRA at least every four years for the so-called index 
pathogens enterovirus, Campylobacter, Cryptosporidium and Giardia. Therefore, 
a three yearly monitoring program for index pathogens in the source water is 
prescribed in Inspectorate Guideline 5318, which may be condensed into one 
year to allow a higher monitoring frequency and hence provide more information 
about variability in pathogen concentrations. The Guideline also defines the 
monitoring frequency for source waters, which depends on the drinking water 
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production volume (Anonymous, 2005). In addition to regular monitoring, a 
number of incidental samples must be collected at moments when peak 
concentrations in pathogen counts are assumed to occur, for example due to 
heavy rainfall. 
Because treatment efficiency is commonly highly location specific, treatment 
data should be collected at every production location. Any changes in the 
treatment process require a new estimation of the treatment efficiency, and thus 
new collection of data. Commonly, pathogen concentrations decrease below 
detection limits as a result of drinking water treatment. Therefore, indicator 
organisms are used to characterize treatment. They have similar properties as 
the index pathogens, and are assumed to be removed equally or less efficient by 
drinking water treatment. Appropriate indicator organisms occur in higher 
numbers and are easier to enumerate with higher recovery. Inspectorate 
Guideline 5318 (Anonymous, 2005) prescribes F-specific or somatic 
bacteriophages as the indicator organisms for determining removal efficiency by 
drinking water treatment of enterovirus. Escherichia coli is used as the indicator 
organism for Campylobacter, and spores of sulphite reducing clostridia (SSRC) 
are used for both Cryptosporidium and Giardia.  
Because the efficiency of treatment varies in time, a sampling period should 
therefore be sufficiently extensive and frequent to be able to account for the 
most important sources of variation and should take changes in treatment into 
account. This also holds true for changes in the source water quality and 
changes in the scientific knowledge into the efficiency of treatment processes. 
Source water quality data need to be collected on a regular basis because of 
possible trends and year-to-year variations. Inspectorate Guideline 5318 
(Anonymous, 2005) prescribes three year data collection for source water 
quality. 
In order to automate the QMRA process, the interactive user-friendly 
computational tool, QMRAspot, was developed to conduct QMRA for drinking 
water produced from surface water. No extensive prior knowledge about QMRA 
modeling is required by the user, because QMRAspot provides the user with 
guidance on the quantity, type and format of raw data, and performs a 
statistical analysis of the raw data and then calculates a risk metric for drinking 
water consumption that can be compared with other production locations, a 
legislative standard, or an acceptable health based target. The uniform approach 
promotes proper collection and usage of raw data, warrants quality of the risk 
assessment, and improves efficiency, i.e., less time is required. QMRAspot 
facilitates QMRA for drinking water suppliers worldwide. The tool aids policy-
makers and other involved parties in formulating mitigation strategies, and 
prioritization and evaluation of effective preventive measures as integral part of 
water safety plans. 
This report explains how QMRAspot assesses the infection risk and addresses 
typical applications. A comprehensive description of QMRAspot version 1.0 has 
been published by Schijven et al. (2011), which is fully cited in this manual, 
supplemented with explanation in more detail and examples, and updated to 
version 2.0 of QMRAspot. QMRAspot was originally developed in Mathematica 
8.0.4 (Wolfram, Inc, Champaign IL, USA). The current QMRAspot version 2.0 
has been updated to run with version 9.0.1 of Mathematica, Player Pro and CDF 
Player. QMRAspot version 2.0 has been extended to include a fifth optional 
pathogen, distribution parameter values for recovery can be set by the user, a 
dose response model can be selected, and dose response parameter values can 
be set by the user for the fifth pathogen. Raw data are stored in an Excel 
spreadsheet that can be read by QMRAspot with Mathematica or Player Pro. 
QMRAspot fits distributions to these data. In addition and/or instead, distribution 
parameter values can be set interactively in QMRAspot. A QMRA can thus be 
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conducted without analysing raw data as well. With the free CDF Player, data 
cannot be read from a spreadsheet, but QMRA can still be conducted by setting 
parameter values.  
 
A QMRA report can be generated for each of the index pathogens and this report 
can be saved as a Mathematica notebook and/or pdf file. 
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2 Excel spreadsheet with raw data 

2.1 Raw data 

For a QMRA, it is essential to collect quantitative microbial data as raw 
unprocessed data. Raw data on enumerated microorganisms in water are the 
counted numbers of the microorganisms as well as the corresponding 
investigated volume of the sample. Commonly, counts are numbers of plaque-
forming units (pfu) for viruses and colony-forming units (cfu) for bacteria 
(Schets et al., 2008; Teunis et al., 2005a). Oocysts of Cryptosporidium and 
cysts of Giardia may be counted manually or automatically under a microscope 
using fluorescent dye (Schets et al., 2008). Raw presence/absence data are 
presence or absence of microorganisms in replicate dilutions of a water sample 
(De Roda Husman et al., 2009).  
Obviously, the concentration of, for example, 1 pathogen particle in 1 millilitre of 
water is the same as a 100 particles in 100 millilitres of water, but 100 counted 
particles produce a more accurate concentration estimate than just one counted 
particle, hence it is essential to use counts and sample volumes as they were 
observed, and not concentrations (ratios of count/volume).  
All raw data must include a sample date, which is needed to enable plotting 
time-series of the data. These plots may reveal variations, trends and extreme 
values, and may aid making selections of the data for QMRA in the spreadsheet. 
 

2.2 Source water data 

Source water data are raw data of index pathogens in the source water (e.g. 
Rutjes et al., 2009; Lodder et al., 2010). At many production locations, river 
water first passes a storage reservoir prior to further treatment. For enterovirus, 
river water may appropriately be designated as source water, because human 
contamination in a storage reservoir is not expected. For Campylobacter, 
Cryptosporidium and Giardia, the storage reservoir should be considered the 
starting point of the QMRA, because of contamination of the storage reservoir 
water with these pathogens from birds, wildlife, or runoff from agricultural land. 
 

2.3 Recovery data 

In order to determine the recovery efficiencies of the detection method for index 
pathogens, ideally, each sample of source water, or a fraction used for analysis, 
is spiked with a sufficiently high number of, for example, a specific type of 
indicator organism. The spiked and recovered numbers can then be used to 
estimate the recovery efficiency. Therefore, raw recovery data consist of counts 
and samples sizes of the spiked and recovered microorganisms that are paired 
according to sampling date (Teunis et al. 1999; Rutjes et al., 2004; Schets et 
al., 2004). If the source water sample contains sufficiently high numbers of 
indicator organisms, like bacteriophages, to allow direct counting after plating, 
these indicator organisms can be used to estimate the recovery efficiency of a 
concentrating step needed for detection of the associated pathogen. 
 

2.4 Treatment data 

Raw data of indicator organisms for a treatment process consist of counts and 
sample volumes of samples taken before and after treatment. If available, raw 
data of index pathogens can be used instead. 
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2.5 QMRAdata.xls 

The tool reads the raw data from a standard Microsoft Excel spreadsheet file, 
here, for convenience, called QMRAdata.xls. It contains three sheets: SCHEME, 
RAW DATA and HELP. The SCHEME sheet provides a description of the drinking 
water production location and defines a table with column headers that is used 
by the tool to make the appropriate data selections. Through the SCHEME sheet, 
the user has control over what data should be used for QMRA. Obviously, the 
RAW DATA sheet contains all raw data and the HELP sheet provides background 
information on how to fill the RAW DATA sheet with raw data in the required 
format. 
 

 
Figure 2.1 SCHEME sheet of QMRAdata.xls 
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In the SCHEME sheet, the effluent data of a treatment step can be the influent 
data for the next treatment step. The data for the next treatment step may also 
be from other types of microorganisms, or from a different location in the 
drinking water utility, or from pilot plant experiments. 
It is easy to modify the SCHEME sheet. For example, two treatment steps 
(designated z1, z2) may be combined into a single one by using the influent 
data of the first of the two and the effluent data of the second of the two 
treatment steps; in this example, z1+z2 with the influent of z1 and the effluent 
of z2. This can be done for each index pathogen independently.  
The SCHEME sheet is a form in which the names of the drinking water company, 
the production location, and the names of the treatment steps can be given. 
Also, the names or labels for the influent and effluent of each treatment step 
need to be given. 
The names of the source water and of the influents and effluents need to be 
exactly the same names as in column A Item in RAW DATA. QMRAspot uses 
these names for selecting the associated data. 
The source of the data for the treatment steps can be selected from the 
following list: Plant scale, pilot plant scale, laboratory scale, and literature. 
Location-specific plant scale data are generally preferred, followed by pilot plant 
scale data, and if these are not available, data from laboratory experiments. In 
other words, location specific data are recommended. If the use of data from 
other locations is desired, applicability should be verified by comparison of 
treatment conditions. References to data from literature should be listed in the 
accompanying QMRA reports. How data from literature can be entered is 
described in chapter 5.  
The SCHEME includes the four index pathogens Enterovirus, Campylobacter, 
Cryptosporidium and Giardia. By default, the corresponding indicator organisms 
for recovery are F-specific RNA bacteriophages or somatic coliphages for 
Enterovirus, E. coli for Campylobacter and SSRC (Spores of Sulphite Reducing 
Clostridia) for Cryptosporidium and Giardia, but other (arbitrary names of) 
microorganisms are also possible. 
The names of the index pathogens and indicator microorganisms for recovery 
and treatment in RAW DATA column C Microorganism need to be exactly the 
same as given in SCHEME, so that QMRAspot can select the associated data. 
 
In version 2.0 of QMRAspot, a fifth optional pathogen can be added, for which 
dose-response data can be entered interactively (see section 5.6). This can be 
any pathogen. QMRAspot version 2.0 retains the ability to read older 
spreadsheets that contain data for the four default index pathogens only. 
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Figure 2.2 RAW DATA sheet of QMRAdata.xls 
 
In the RAW DATA sheet, every row is a full record of raw data. This simple 
design allows for automated filling from a Laboratory Information Management 
System (LIMS), for example, as records are stored in the form of Comma 
Separated Values (CSV).  
 
 Column A Label: The name of source water, "Spike", "Recovered", treatment 

influent, or treatment effluent. 
 Column B Sampling code: Specific code. Not used in QMRA calculation, but 

included in RAW DATA to allow for more detailed reference. Different codes 
may be included for different sampling points of the same effluent. In the 
QMRA these are combined.  

 Column C Microorganism: Index pathogens and indicator microorganisms. 
Exactly the same names as given in SCHEME. 

 Column D Date: Date format: DD-MM-YYYY. 
 Column E Count: Only positive integers are allowed. Max counts per plate 

according to standard method. Viral counts are counts of enterovirus or 
bacteriophage plaques. Bacterial counts are colony counts in detection 
methods for bacteria using membrane filtration. Protozoal counts are 
microscopic (automated) counts of fluorescent labelled (oo)cysts. 

 Column F Sample size: Dimension liter. The original equivalent volume of the 
sample that the detected microorganisms were counted in.  
Example 1: a 10-litre sample was collected, concentrated to 100 ml, 5 ml 
was plated for counting, then the sample size is 10/20=0.5 litre. 
Example 2: 98 colonies were counted on a plate with 1 ml sample and 
11 colonies were counted in the ten-fold dilution. Count is 109 and sample 
size is 0.0011 litres. 
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 Columns G-O: MPN data, Most Probable Number data. May be available 
instead of counts and sample volumes. 
V1, V2, V3, V4, V5 are the sample volumes of five dilution steps. Dimension 
is litre. 
R1, R2, R3, R4, R5 are the numbers of replicates for each dilution step. Only 
whole numbers allowed. 
MPN1, MPN2, MPN3, MPN4, MPN5 are the numbers of positive samples of a 
particular analysed volume. Only whole numbers from 0 - the number of 
replicates are allowed. 
 
Example 
V1(liter) R1 MPN1 V2(liter R2 MPN2 V3(liter) R3 MPN3 
0.001 3 3 0.0001 3 2 0.00001 6 4 

 
In this example, the volume of dilution step 1 is 0.001 litres and it is 
replicated three times. Of those replicates, all three showed positive 
detection. 

 
Recovery: RAW DATA of "Spiked" and "Recovered" microorganisms. The label is 
"Spike" or "Recovered". The data are counts and sample sizes. 
 
Treatment: In SCHEME, the name of the treatment step can be given. This may 
also be a combination of treatment steps. 
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3 Run screen QMRAspot 

3.1 Run 

 

 
Figure 3.1 Run screen of QMRAspot at start up 
 
At start up, the Run screen of QMRAspot has no file selected; the index 
pathogens Enterovirus, Campylobacter, Cryptosporidium and Giardia are all 
selected. Obviously, QMRAspot only conducts QMRA for the index pathogens 
that are selected. 
Pressing the “Reset” button resets QMRAspot to this state. Resetting is disabled 
while QMRAspot runs. 
Should a user want to stop a run of QMRAspot by aborting an evaluation, it is 
recommended to restart with a new kernel or reloading of QMRAspot. 
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3.2 Select QMRA data spreadsheet 

 

 
Figure 3.2 Run screen of QMRAspot after selecting spreadsheet with QMRA data 
 
The “Select file” button allows the selection of a QMRAdata spreadsheet. In this 
case QMRAdataWRES.xls has been selected. This spreadsheet contains a 
combination of data from several drinking water companies (Schijven et al., 
2011). This particular data set can be used as the reference data set. It serves 
as a template for other QMRA data sets and can be used to compare QMRA 
outcomes calculated by different versions of QMRAspot to identify possible 
differences. Together with QMRAspot, each new user should have a copy of the 
reference data set. 
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3.3 Run QMRA 

 

 
Figure 3.3 Run screen of QMRAspot at fitting distributions 
 
The QMRAspot logo is a button. Pressing it starts the QMRA run. On the start-up 
screen, a progress bar allows the user to monitor that after a few seconds, 
QMRAspot has read all the data on source water concentration, recovery and 
treatment from the spreadsheet and is fitting the appropriate distribution to the 
data of each QMRA step. 
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3.4 Data analysis 

 

 
Figure 3.4 Run screen of QMRAspot almost finished 
 
After a short while (in this case 1 minute and 6 seconds), QMRAspot has finished 
fitting distributions, plotting time series of the data read from the spreadsheet, 
drawing samples from the fitted distributions (for Monte Carlo calculations), and 
overall treatment, exposure and infection risks have been calculated. 
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3.5 End of run 

 

 
Figure 3.5 Run screen of QMRAspot at end of run 
 
After finishing all the calculations, the main QMRAspot screen shows box-
whisker plots of estimated infection risks per person per year for the selected 
index pathogens. The y-axis shows the infection risk per person per year on a 
log10 scale. The whiskers of the box-whisker plots are the 5- and 95-percentile 
values of the infection risk, and the box entails the 25- and 75- percentiles. The 
(arithmetic) mean infection risk is indicated with a blue line. The calculated risk 
is presented in relation to the Dutch health target of 10-4 per person per year. If 
the mean AND the 95-percentile lie below 10-4 per person per year (indicated as 
a black horizontal line) then the box is coloured green to denote compliance with 
the health based target. The box is orange if the mean OR the 95-percentile 
exceeds the target. If the box is red, then the mean infection risk AND the 
95-percentile exceed the target. If the 95-percentile of the infection risk is lower 
than 10-9 or higher than 0.9, a message appears with this information instead of 
a box-whisker plot. 
Note that a proper risk assessment outcome needs to include a risk value and its 
probability. In this QMRA, the mean infection risk does not fulfil that 
requirement. The probability corresponding to any infection risk depends on the 
shape of its distribution. It is most straightforward to use the 95-percentile value 
as the target. This choice implies that per person per year, a predicted infection 
risk of 10-4 is not exceeded with 95% confidence. 
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3.6 Report 

 

 
Figure 3.6 Run screen of QMRAspot at end of run with QMRA report for 
enterovirus in a new window. 
 
 
The box-whisker plots on the run screen that appear at the end of the run are 
buttons that when pressed open a window with a QMRA report of the selected 
pathogen. The report, or selections in the report can be printed and saved as 
pdf. 
Each report contains a general table with reference to the tool version, run date, 
QMRA data Excel file and which index pathogen. A drinking water utility table 
gives a summary description of the drinking water production location. The 
summary table and all histograms are included. 
  



RIVM Report 2014-0020 

 Page 27 of 71
 

4 Results: Tabs with index pathogen names 

4.1 General 

Under the tabs with the index pathogen names the result of all the steps in the 
QMRA show up in detail as soon as they are available. 
In the different stages of the QMRA, histograms of ten thousand Monte Carlo 
simulated data are presented; see section 8 for a brief explanation of Monte 
Carlo simulation. Ten thousand Monte Carlo samples have empirically been 
found to be a sufficient number of samples for a stable outcome (Teunis and 
Havelaar, 1999). 
Figure 4.1 shows a histogram of Monte Carlo data as an example. These data 
are Monte Carlo samples that were drawn from a Beta distribution with 
parameters α=0.24 and β=970, and represent ten thousand fractions of 
microorganisms passing a treatment step. The left histogram shows the 
probability distribution of the fractions. As can be seen, most of the fractions are 
very small values; therefore, a log10 transformation of the fractions is 
appropriate. The left histogram shows the probability distribution of the log10-
transformed fractions from the 1- percentile to the 99-percentile. To the right of 
this histogram is a table presenting information on the type of distribution, 
distribution parameter values and some obvious statistics. Note that this 
distribution spans a large range. Values of -8 log10 or lower are in fact of 
numbers near zero, all with a small probability. 
 
 

 
Figure 4.1 Histogram with Monte Carlo data 
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4.2 Data scheme 

 

 
Figure 4.2 Enterovirus-Data scheme 
 
Under Enterovirus-Data scheme, a summary table is shown of all data that were 
read from the spreadsheet. It shows the names of the source water and 
treatment steps, and from what indicator organism treatment data were 
available. The rightmost two columns show the numbers of samples available for 
each QMRA step.  
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4.3 Source water 

 

 
Figure 4.3 Enterovirus-Source water, no recovery data 
 
Under Enterovirus-Source water, the source water data are presented. The top 
left plot shows all individual pathogen concentrations in the source water as a 
time series. In this particular example, in five samples (#pos) of 35 samples 
(#tot), enterovirus was detected. The blue line is the mean concentration of the 
fitted Gamma distribution for the pathogen concentration. The area shaded in 
light blue encompasses the area below the 95-percentile of the fitted Gamma 
distribution data. In five cases, corresponding to the positive samples, the 
estimated concentrations appear to exceed the 95-percentile value. By 
definition, these values may be considered to be peak concentrations for which it 
is recommended  investigating what environmental conditions may explain the 
occurrence of these high values, if not already known. N and V represent the 
total count and sample volume. 
The bottom left panel shows a histogram of ten thousand Monte Carlo values 
(see also section 8) that were drawn from the fitted Gamma distribution that 
describes the variability of the pathogen concentrations in the source water, and 
a table with parameters r and λ, and some statistics of that distribution. 
The bottom right panel shows the distribution of the pathogen concentration 
after correction for recovery. In this example,  it is the same histogram as in the 
left hand panel. In this example, no recovery data were available; hence, it was 
assumed that recovery was equal to one. So far, lack of specific recovery data is 
common, unfortunately, and it should be realized as well as reported that in this 
case the infection risk may be underestimated. 
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4.4 Source water with recovery correction 

 

 
Figure 4.4 Cryptosporidium-Source water with recovery data 
 
This screen shows the source water data for Cryptosporidium including recovery 
data. The recovery data encompass paired data of spiked and recovered 
numbers of microorganisms to which a Beta distribution with parameters α and 
β is fitted. A Beta distribution describes a variability of a fraction, i.e. a number 
between 0 and 1. The top right panel shows the fitted distribution as a 
histogram of ten thousand Monte Carlo samples. The ten thousand random 
samples from the Gamma distributed pathogen concentration in the source 
water (bottom left panel) is divided by the ten thousand random Beta distributed 
recovery fractions, to produce ten thousand corrected source water 
concentrations, shown in the bottom right panel, as a histogram and a table with 
a few statistics; see section 8 for a brief explanation of Monte Carlo simulation. 
The distribution of the corrected concentration has shifted approximately one 
log10 to the right and is a bit wider than the distribution of the source 
concentration. 
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4.5 Treatment z1 

 

 
Figure 4.5 Enterovirus-z1, the first treatment step “Step 1” 
 
Enterovirus-z1 shows influent and effluent somatic coliphage concentrations of 
the first drinking water treatment step z1 as a time series, with the 95% region 
shaded in light blue and the average concentration as a blue line, similar to the 
graphs of the pathogen concentrations in the source water. The time series plot 
on the bottom left shows both influent and effluent concentrations on a 
logarithmic scale. In that combined plot, non-detects cannot be included. The 
purpose of this plot is to allow the user to scrutinize possible variation of the log 
removal of microorganisms by treatment. This example shows that both influent 
and effluent concentrations vary by season, and that removal efficiency varies 
as well.  
 
Unlike recovery data, treatment data are not treated as paired, even when 
influent and effluent were sampled on the same day, i.e. the microorganisms 
that are counted in the an effluent sample may not have originated from the 
same influent as the microorganisms that were counted in the influent sample of 
the same date. Also, often the numbers of samples taken from influent and 
effluent are not even the same. Obviously, influent and effluent data must be of 
the same time period. The bottom right panel shows the variation in removal, as 
a histogram of ten thousand beta distributed fractions of microorganisms that 
passed this treatment stage, and some statistics (see section 7.4). Note that 
reduction is expressed on a log10 scale: in this example, on a log10 scale, the 
distribution is slightly left skewed. 
Note that in the tab “z1” is designated as a general reference for the first 
treatment step, and that “Step 1”is the name of treatment step z1 as read from 
the spreadsheet. 
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4.6 Treatment z2 

 

 
Figure 4.6 Enterovirus-z2, the second treatment step “Step 2” 
 
Enterovirus-z2 shows influent and effluent somatic coliphage concentrations of 
the second drinking water treatment step z2 as a time series (top panels and 
bottom left). In this case, half of the effluent data are non-detects. The beta 
distributed fractions (bottom right panel) are left skewed. 
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4.7 Treatment z3 

 

 
Figure 4.7 Cryptosporidium-z3, the third treatment step “Step 3” 
 
Cryptosporidium-z3 shows influent and effluent SSRC concentrations of the third 
drinking water treatment step z3 as a time series. In this case, 538 of 582 
effluent data are non-detects. The beta distributed fractions are strongly left 
skewed. 
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4.8 Exposure 

 

 
Figure 4.8 Enterovirus-Exposure 
 
The top left panel of the exposure screen shows the combined treatment effect 
as a histogram of log reductions, and a table with statistics. For each of the 
treatment steps there are ten thousand randomly sampled fractions. The first 
fractions of each of the treatment steps are multiplied with each other, and so 
are the second, third, etcetera. This produces the total treatment as shown in 
the top left histogram. By multiplying the corrected pathogen concentration data 
with the total treatment data, the drinking water concentration data are 
obtained, shown in the bottom left panel. 
The top right panel shows tap water intake as the (lognormal) distribution of 
consumption of un-boiled drinking water per person per day in the exposed 
population. Multiplication of drinking water concentration data with these 
consumed volumes produces the exposure, or the dose, as the numbers of 
ingested pathogens per person per day as a distribution in the bottom right 
panel. 
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4.9 Infection risk 

 

 
Figure 4.9 Enterovirus-Infection risk 
 
The infection risk screen shows the infection risk per person per day (top left 
panel) calculated by applying the dose response model to the exposure 
estimates. The yearly infection risk (risk of infection per person per year) is 
calculated by repeated sampling from the daily infection risks as explained in 
chapter 9 (top right panel). The infection risk per person per year is also shown 
in a box-whisker plot (bottom centre). 
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4.10 Summary table 

The Summary Table of QMRA results is given for all four index pathogens using 
the reference data set. These tables show mean, 5-percentile, median and 
95-percentile values for each QMRAstep including their log10 values. For 
comparison, point estimates are included in the rightmost column. The point 
estimate for the pathogen concentration in the source water is calculated from 
the total counted number and total volume of all samples. The point estimate is 
the maximum likelihood value of Poisson-distributed counts, assuming a fixed 
(constant) concentration. Such weighted average concentrations are also 
calculated for the indicator organisms in the influent and effluent of each 
treatment step. Their ratios represent a point estimate for the fraction of 
microorganisms that pass the corresponding treatment stage(s). 
Comparison of the results from the Monte Carlo simulation and point estimates 
demonstrates that the point estimate of exposure may be higher (0.5 log10) or 
lower (1 log10) than the mean exposure calculated from the Monte Carlo 
simulation. 
Note that the use of a point estimate ignores information about its probability. 
In Monte Carlo simulation, any sampled number occurs with its own probability 
as demonstrated by the quantiles below. 
 

 
Figure 4.10 Enterovirus-Summary table 
 
The Enterovirus summary table shows that the point estimate of the exposure is 
0.3 log10, i.e. a factor of two lower than the mean exposure. This difference 
mainly resides from treatment step 2 (section 4.6). 
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Figure 4.11 Campylobacter-Summary table 
 
In the Campylobacter summary table, the point estimate of the pathogen 
concentration in the source water is 0.5 log10 lower than the mean of the 
distribution. Point estimates of all treatments steps suggest more efficient 
removal than the Monte Carlo simulation, leading to almost 1 log10 lower 
exposure according to the point estimates than with the Monte Carlo sampling 
approach. Note that the mean exposure as calculated by Monte Carlo simulation 
exceeds the 95-percentile because of the skewness of the distribution 
(Figure 4.11). 

 
Figure 4.12 Campylobacter-Exposure histogram with mean value larger than the 
95-percentile 
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Figure 4.13 Cryptosporidium-Summary table 
 
In the Cryptosporidium summary table, the point estimate of the exposure is 0.4 
log10 higher than the mean from the Monte Carlo simulation, mainly because of 
treatment step z3. Note that, here again, the mean exposure as calculated by 
Monte Carlo simulation is higher than the 95-percentile because of the skewness 
of the exposure distribution (Figure 4.13). 
 

 
Figure 4.14 Cryptosporidium-Exposure histogram with mean value larger than 
the 95-percentile 
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Figure 4.15 Giardia-Summary table 
 
In the Giardia summary table, the same indicator organism is applied for 
treatment efficiency as for Cryptosporidium and, therefore, overestimation by 
the point estimates is also similar to that of Cryptosporidium. 
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4.11 Sensitivity analysis 

 

 
Figure 4.16 Enterovirus-Sensitivity analysis 
 
To illustrate the importance of variable factors in QMRA, a simple sensitivity 
analysis is conducted in which the contribution of each step to the variance of 
the exposure is calculated. To that end, all Monte Carlo estimates are log 
transformed, and for each step in QMRA, the variance is calculated and divided 
by the variance of the exposure or dose. The sensitivity graph in the above 
example shows these contributions, sorted by their magnitude. It appears that 
treatment Step 2 accounts for the main contribution to the variance in exposure. 
On the basis of this sensitivity analysis, the drinking water company may decide 
to reduce variation in operational conditions of treatment Step 2, as part of their 
water safety plans, thereby increasing reliability and enabling better risk 
prediction.  
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5 Parameter settings 

5.1 General 

Instead of and/or in addition to reading raw data from a spreadsheet, it is also 
possible to simulate pathogen concentrations in source water as well as removal 
of microorganism by treatment by entering characteristic distribution parameter 
values and then conducting a QMRA. If QMRAspot runs with the CDF Player, 
entering characteristic parameter values is the only way of conducting the 
QMRA, because in that case spreadsheet data cannot be imported. Although raw 
data are the preferred basis for QMRA, the option of QMRAspot for entering 
distribution parameters directly enhances its versatility. QMRA can thus also be 
conducted, if raw data are lacking, or it can be used to answer a variety of what-
if questions, or do scenario studies. 
While a QMRA is running, parameter settings cannot be changed. 
Once a spreadsheet with QMRA data is selected, names of source water, 
microorganisms and treatment steps are taken from the spreadsheet and cannot 
be set or altered under parameter settings. 
 

  



RIVM Report 2014-0020 

 Page 42 of 71 

5.2 Source water 

 

 
Figure 5.1 Parameter settings-Source water 
 
Under Parameter settings-Source water, for each selected index pathogen, it is 
possible to have the tool read raw data, or to enter a concentration mean μ and 
95-percentile (can be approximated with a maximum value), or to use 
parameter values for r (shape parameter) and λ (scale parameter) of a Gamma 
distribution. Commonly, one may have at least some notion of a mean and 
maximum source water concentration. When these are given, the tool will 
directly estimate the corresponding Gamma distribution parameters. Note that it 
is a property of the Gamma distribution that its 95-percentile value cannot 
exceed the mean by more than 5.8 times, which nevertheless represents a very 
wide distribution. When the Gamma distribution parameters are given, 
QMRAspot calculates the corresponding mean and 95-percentile. 
Suppose a few samples have been analysed for one of the index pathogens. A 
proper estimate of the mean concentration is the weighted average 
concentration as calculated from the total counts and sample size of all samples.  
The 95-percentile is usually the highest concentration. 
Estimates for r and λ, or mean and 95-percentile may also be taken from 
literature, or even be fictive values used for scenario calculations. 
If no spreadsheet with QMRA-data has been selected, then names for the source 
waters can be entered by the user. 
The raw data option is not available when QMRAspot runs with the CDF Player.  
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5.3 Recovery 

 

 
Figure 5.2 Parameter settings-Recovery 
 
Under Parameter settings-Recovery, for each index pathogen, it is possible to 
set the tool to reading raw data, or using mean recovery R and parameter α of 
the Beta distribution, or using parameter values for α and β of the Beta 
distribution. R, α, and β need to be larger than zero. If R=1, or input of R, or α, 
or β is not a positive number, then R will be set to one. If values for α and β are 
available, for example from literature, their values can be entered directly. If 
one has some notion of mean and 95-percentile, then first the mean value 
needs to be entered directly, and then a value for parameter α needs to be 
entered such that the desired 95-percentile value is obtained. 
If no spreadsheet with QMRA-data has been selected, then names for the 
indicator organisms can be entered by the user. 
The raw data option is not available when QMRAspot runs with the CDF Player.  
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5.4 Treatment 

 

 
Figure 5.3 Parameter settings-Treatment-Enterovirus 
 
Although QMRA based on location-specific raw data for treatment at full scale is 
strongly preferred, the tool provides the option for including distribution 
parameters values of fraction z of the microorganisms that were able to pass 
treatment instead of raw data. This option is not included to move away from 
collecting raw data, but often location-specific data at plant scale are not 
available because indicator organism levels were (expected to be) below 
detection limits. This often occurs with very efficient treatment steps and/or at 
the end of the production chain. In those cases, one has to rely on (literature) 
data from pilot plant experiments that mimic full scale conditions, or on data 
from laboratory scale experiments, or use treatment data that were collected at 
other plants operating under similar conditions. In all these cases, the 
applicability of the data to the location specific conditions needs to be verified. It 
is also possible to use models for treatment processes to predict removal values 
or to provide Beta distribution parameter values. 
The option of including a treatment step by means of its distribution parameters 
can also be used to determine the required additional treatment if a drinking 
water location exceeds the health based targets. This option allows for scenario 
studies, and therefore, greatly increases the versatility of QMRAspot.  
Under Parameter settings - treatment, for each index pathogen, a mean log10 
value for log removal by treatment can be set instead of using raw data. In CDF 
Player, this is the only option. By setting the value of Beta distribution 
parameter α, the shape of the Beta distribution can be set. The associated 
values of the 95-percentile and Beta distribution parameter β are calculated and 
given. The user can experiment with these settings to achieve their desired 
target values. If input of log10z, or α, or β is not a positive number, then log10z 
will be set to zero, implying no treatment; see also the previous section on how 
to enter the parameter values. It is also possible to switch off a treatment step.  
If no spreadsheet with QMRA-data has been selected, then names for the 
treatment steps and indicator organisms can be entered by the user.  
The raw data option is not available when QMRAspot runs with the CDF Player.  



RIVM Report 2014-0020 

 Page 45 of 71
 

5.5 Consumption 

 

 
Figure 5.4 Parameter settings-Consumption of unboiled drinking water 
 
QMRAspot offers four alternatives for consumption of unboiled drinking water 
per person per day. Except for the third option, these are all lognormal 
distributions, with parameters defined by various studies. Parameters  
μ=-1.85779 and σ=1.07487 are for the Netherlands, corresponding to a mean 
of 0.27 litres per person per day (Teunis and Havelaar, 1999), a lognormal 
distribution with parameters μ=-0.03598 and σ=0.77218 for the USA, 
corresponding to a mean of 1.3 litres per person per day (USEPA, 2006), a fixed 
volume of 2 litres per person per day (WHO, 2011) and, finally, the possibility of 
putting in the parameter values for μ and σ for any other lognormal distribution 
of drinking water consumption, if available for another country or for a specific 
subpopulation. Consumption data may differ between countries and also 
between subpopulations; climate may also play a role. More data and a 
discussion about such variability, is given in USEPA (2006), by Westrell et al. 
(2006a) and WHO (2008). 
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5.6 Dose response 

 

 
Figure 5.5 Parameter settings-Dose response 
 
Four dose response models are available and shown in the table. 
1. Exposure probability in the case no dose response data are available. 
2. The exponential model, with parameter r. If r=1 then it is assumed that 

probability of infection equals exposure probability (option 1.). 
3. The exact Beta Poisson model using the hypergeometric function 1F1 with 

parameters α and β describing variability in infectivity A simplification of the 
exact Beta Poisson model when α>1 and β>10 α. In that case, the 
calculation using 1F1 may be very slow, whereas the simplified model is fast 
and justified (Teunis and Havelaar, 2000). 

For the four default index pathogens, the exact Beta Poisson model is applied 
using pairs of different α and β values that reflect variability and uncertainty of 
infectivity of the pathogen. These parameters sets are included in the program 
code of QMRAspot as Monte Carlo samples of the dose response parameters α 
and β, and are included in the code of the tool in a packed form to save memory 
space. 
In the run screen, an “other” pathogen can be selected. Norovirus can be 
selected from the drop-down list, whereby the built-in parameter values for α 
and β of 0.044 and 0.50 (Teunis et al., 2008) are used. For any other pathogen 
(which may also be one of the four default index pathogens), a dose response 
model can be selected and corresponding (fixed) parameter values can be set 
(see also section 10). 
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6 Help 

 
Figure 6.1 Help-Messages, top of screen 
 
Under the Help-tab, information is provided about the version of QMRAspot and 
its version history. Also, brief guidance is provided on how to use QMRAspot. 
Finally, under Help-Messages, (error) messages generated during a run of 
QMRAspot are listed. The messages also include the Gamma distribution 
parameter values of the source water concentrations and of all influent and 
effluent concentrations. 
The (error) messages or warnings that may occur are explained here below. 
 
{FindMinimum::lstol} 
The command FindMinimum may produce the message lstol: 
The objective function does not have a smooth minimum. 
The line search decreased the step size to within tolerance specified by 
AccuracyGoal and PrecisionGoal but was unable to find a sufficient decrease in 
the function. More than MachinePrecision digits of working precision may be 
needed to meet these tolerances. 
The algorithm for finding the maximum likelihood (minimum deviance) 
parameters found an optimum, but could not establish the precision of the 
estimated parameter values (because the target function had a too small 
gradient). Care should be taken to check the appropriateness of the resulting 
distributions. 
 
{FindMinimum::sdprec} 
The command FindMinimum may produce the message sdprec: 
Line search unable to find a sufficient decrease in the function value with 
MachinePrecision digit precision. This is a similar warning to the previous one. 
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{FindMinimum::nrnum} 
The command FindMinimum may produce the message nrnum: 
This usually implies that the starting values did not lead to finding the 
appropriate minimum. In this the reported distribution parameter values may 
not be correct. 
 
In all these cases it is strongly recommended to scrutinize the underlying data. 
For example, one may test whether parts of the data provide acceptable fitting 
or insights into the cause of the warning messages. 
 
Support in handling error and warning messages can be provided by sending an 
email to QMRAspot@rivm.nl. 
 

 
Figure 6.2 Help-Messages, scrolled down 
 
Of all raw data, the number of data with counts between 0 and 100, 100 and 
200, 200 and 300, 300 and 1000 and more than 1000 are listed. This is done to 
highlight unrealistically high counts in the data. 
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7 Fitting distributions to the data 

7.1 General 

All raw data sets should include three or more samples: smaller data sets are 
ignored and parameters are not estimated. Counts in QMRAdata.xls may only be 
integers, any non-integer counts are rounded. QMRAspot does not generate a 
message that it has rounded non-integers. 
Distributions are fitted to the data minimizing deviance functions to obtain a 
maximum likelihood estimate. This procedure finds optimum parameter values 
by maximizing the likelihood (or posterior probability) of the selected model with 
the observed data. Maximum Likelihood Estimation (MLE) is a standard approach 
to parameter estimation and inference in statistics. MLE has many optimal 
properties in estimation: sufficiency (complete information about the parameter 
of interest contained in its MLE estimator); consistency (true parameter value 
that generated the data recovered asymptotically, i.e. for data of sufficiently 
large samples); efficiency (lowest-possible variance of parameter estimates 
achieved asymptotically); and parameterization invariance (same MLE solution 
obtained independent of the parameterization used) (Myung, 2002). 
 

7.2 Source water concentration 

Monitoring of the surface water should be aimed at achieving a representative 
quantification of the numbers of pathogenic microorganisms in the source water, 
considering seasonal variability, as well as short term fluctuations of pathogen 
concentrations (Westrell et al., 2006). 
 
If microbial particles in water are homogeneously distributed, then the counts n 
within each sample of size V are Poisson distributed. Because the concentration   
is assumed to be gamma distributed among samples, the counts n1…nN  of N 
samples with samples sizes V1…VN  have a Negative Binomial distribution with 
parameters r and 1/(1+λVi) (Teunis et al., 2009).  
A Gamma distribution is used to describe the variability between concentrations 
in samples taken at different times. A Gamma distribution is a distribution that 
arises naturally in processes for which the waiting times between events are 
relevant. It can be thought of as a waiting time between Poisson distributed 
events. A Gamma distribution has a mean value equal to rλ and a variance equal 
to rλ2. Parameter r is a scale parameter and λ a shape parameter.  
A Negative Binomial distribution is a discrete probability distribution of the 
number of successes in a sequence of binomial trials before a specified (non-
random) number of failures (r) occurs. For example, if we define a "1" as failure, 
and all non "1"s as successes, and we throw a dice repeatedly until the third 
time “1” appears (r = three failures), then the probability distribution of the 
number of non-“1”s that had appeared will be negative binomial 
(http://en.wikipedia.org/wiki/Negative_binomial_distribution). 
To summarize, the choice for a Gamma distribution follows from the concept 
that concentration varies, that it is related to the negative binomial distribution, 
and that the maximum likelihood estimation is simple. 
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Parameters r and λ  are estimated by minimizing the following deviance 
function: 
 
L 	r,1/ 1 λVi ‐2ln∏ f r NegBin ni,Vi|r,s/ s Viλ

n
i 1  (1) 

 
where f r 1‐ϕ x‐20 /20 is a prior function for the shape factor r, with ϕ x‐20 /20 
the cumulative normal distribution with a mean and variance of 20. This function 
can be interpreted as very flat, prior to that preventing extremely small values 
of r from occurring, thereby facilitating robust parameter estimation without 
strongly affecting the estimates. s is a scaling factor. If the mean sample volume 
is less than one litrr then s=0.001. This scaling avoids computational 
underflows. 
 
In QMRAdata.xls presence/absence data may be given for any microorganism, 
although this is usually only the case for Campylobacter. These observations are 
used to calculate a concentration for each actual taken sample by minimizing the 
following deviance function: 
 

L c,V ‐2ln∏
ni 0 ⇒ Pois 0|Vi

ni 0 ⇒ 1‐Pois 0|Vi
n
i 1  (2) 

 
where Pois denotes Poisson distribution, c is concentration and Vi is the sample 
size of the i-th sample. 
 
Subsequently, a Gamma distribution with parameters r and λ is fitted to the 
concentration data by minimizing the following deviance function: 
 

L r,λ ‐2ln∏

ci 0 ⇒ GammaCDF L c,V χ95%
2 df 1 | ln r, ln λ

ci ∞ ⇒ 1‐GammaCDF L c,V χ95%
2 df 1 | ln r, ln λ

0 ci ∞ ⇒ Gamma ln r, ln λ

n
i 1   (3) 

 
Where ci is the concentration of the i-th sample. Gammacdf denotes a 
cumulative function of the Gamma distribution. L(c,V)= Х2

95%(df=1) is the root 
of the likelihood function equal to the 95-percentile of a Chi-squared distribution 
with one degree of freedom (df). Note that in equation (3) the zero and infinity 
sign were exchanged compared to Schijven et al. (2011). This has been 
corrected in QMRAspot as of version 1.2. 
 
If raw data of the index pathogen in the source water consist of non-detects 
only, a Gamma distribution with parameters r=0.01 and λ=1/(ΣVi+0.01) is 
assumed. 
 

7.3 Recovery, R 

In order to estimate the recovery efficiency of the detection method of the index 
pathogen, samples are spiked with a known number of the specified indicator 
organisms. After processing  the samples, a fraction of the spiked organisms will 
be recovered. The data on the initial spike and on the recovery are paired per 
experiment. The recovered fraction is assumed to be Beta distributed with 
parameters α and β. Estimation of these parameters by means of the paired 
Beta model is explained in detail by Teunis et al. (1999, 2005, 2009). If 
recovery data are lacking, then QMRAspot applies R=1. Potentially this leads to 
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underestimation of risk and this should be addressed in the discussion of the 
QMRA results. 
A beta distribution is a family of continuous probability distributions defined on 
the interval [0, 1] and parameterized by two positive shape parameters, 
denoted by α and β, that appear as exponents of the random variable and 
control the shape of the distribution 
(http://en.wikipedia.org/wiki/Beta_distribution). The interval [0,1] applies 
because recovery is a fraction, i.e. its value lies between 0 and 1. 
 
 

7.4 Treatment, z 

Here, we assume that treatment z is in effect, implying that microorganisms are 
removed and thus 0≤z≤1. It is assumed that microorganisms passing treatment 
do so independently with a probability or fraction z. This may be modelled as a 
binomial process, either with paired or unpaired samples (Teunis et al., 1999, 
2009), or as the ratio of the Gamma distributed effluent concentrations / the 
Gamma distributed influent concentrations. Collection of paired data from a 
treatment step requires exact timing of the sampling. The pairing may be lost if 
mixing occurs during treatment. Residence times in treatment may vary from a 
few hours to several days. In many cases, even with short residence times and 
samples of influent and effluent collected on the same day, pairing is not 
evident. 
In QMRAspot under Parameter settings-Treatment, a treatment step can be set 
to use the raw data from a spreadsheet or to enter characteristic parameter 
values, or to switch off the treatment step. Depending on these settings and on 
the raw data values, treatment fraction z may be equal to one, be described by 
a Beta distribution or, as the ratio of the Gamma distributed concentrations of 
influent and effluent. This is a so-called type II Beta distribution or F-distribution 
(Teunis et al., 2009). 
Table 1 lists all the possible ways of how z is calculated (model selection) and 
what output is produced. 
Commonly, drinking water companies prefer to characterize each treatment step 
separately.  
However, treatment steps may be combined. In fact, one could combine all 
treatment steps into one if desired. For example, treatment step 2 and 3 are 
combined to step 2+3 by analysing the influent data of step 2 and the effluent 
data of step 3. This needs to be set as such in the data spreadsheet (section 
2.5). Of course, influent and effluent data need be associated with each other. A 
reason for combing treatment may be that the effluent data of step 2 consist 
only of non-detects, whereas, due to taking larger samples, in the effluent 
sample of step 3, microorganisms were detected. 
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1 Table 7.1 Model selection for treatment 

Setting Data or 
condition 

Calculation (for explanation of Monte 
Carlo simulation, see section 8) 

Output 

Log10z,α 
or α,β 

No data needed β = α/10^log10z-α. α and β are the 
parameter of the Beta distributed 
treatment fraction z. With 
RandomReal[BetaDistribution[α, β], 10 
000] ten thousand Beta distributed 
fractions are generated. 

Histogram of 
Beta 
distributed 
fractions. 
The associated 
histogram 
heading 
includes 
"Parameter 
values set" and 
"Unpaired beta 
model" 

Off No data needed Treatment fraction z is set equal to one, 
implying no pathogen removal by this 
treatment step. 

No histogram. 
Message: 
"Switched off" 

Raw 
data 

No data in the 
spreadsheet 

Treatment fraction z is set equal to one, 
implying no pathogen removal by this 
treatment step. 

No histogram. 
Message: 
"No data" 

Raw 
data 

Less than three 
influent or 
effluent  raw 
data 

Treatment fraction z is set equal to one, 
implying no pathogen removal by this 
treatment step. 

No histogram. 
Message: 
"Too few data" 

Raw 
data 

Only non-
detects in the 
influent and 
effluent data, 
so zero counts 
in all samples 

Treatment fraction z is set equal to one, 
implying no pathogen removal by this 
treatment step. 

No histogram. 
Message: 
"Too uncertain 
for use in 
QMRA " 

Raw 
data 

Only non-
detects in the 
influent, but 
detection in 
effluent data 

Treatment fraction z is set equal to one, 
implying no pathogen removal by this 
treatment step. Note that if the sample 
size of influent and effluent samples are 
similar, this could imply that z>1. 

No histogram. 
Message: 
"Too uncertain 
for use in 
QMRA " 

Raw 
data 

Detection in 
influent 
samples and 
parameter r of 
the Gamma 
distributed 
influent 
concentration 
≥5 

If parameter r of the Gamma distributed 
influent concentration ≥5, implying near 
constant influent concentration, then the 
unpaired beta model has difficulty in 
finding a solution. To circumvent this 
technical inconvenience, the gamma ratio 
model is applied to generate ten thousand 
fractions. 
Gamma distribution parameters r (shape) 
and λ (scale) of the influent (i) and 
effluent (e) concentrations are estimated 
in the same as for the pathogen 
concentration in the source. 
Then z= 
RandomReal[GammaDistribution[re, λe], 
10 000] / 
RandomReal[GammaDistribution[ri, λi], 10 
000] 

Histogram of 
Ratio of 
Gamma 
distributed 
influent and 
effluent 
concentrations. 
The associated 
histogram 
heading 
includes "High 
uncertainty".  

Raw 
data 

Detection in 
influent 
samples, not 
necessarily in 
effluent 
samples 

Estimation of the parameters α and β by 
means of the unpaired Beta model is 
explained in detail by Teunis et al. (1999, 
2009). 
With RandomReal[BetaDistribution[α, β], 
10 000] ten thousand Beta distributed 
fractions are generated. 

Histogram of 
Beta 
distributed 
fractions. 
The associated 
histogram 
heading 
includes 
"Unpaired beta 
model". 
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8 Monte Carlo simulation 

In QMRAspot, Monte Carlo simulation is used to generate data from probability 
distributions that describe pathogen concentrations in the source water, the 
fractions of microorganisms that pass drinking water treatments, and 
consumption of unboiled drinking water per person per day. The generated 
random data are used to calculate exposure and infection risk. 
 
The following simple example with Mathematica code illustrates how such Monte 
Carlo simulation works.  
Consider ten throws with a dice, the values are stored in vector a: 
 
a=RandomInteger[{1,6},10] 
 
{1,2,3,1,4,5,1,1,2,5} 
 
In the same way vector b contains the values of ten other throws: 
 
b=RandomInteger[{1,6},10] 
 
{2,5,5,6,3,1,4,1,6,1} 
 
Vector ab is the product of a and b, in which the i-th element of a is multiplied 
with the corresponding i-th element of b: 
 
a b 
 
{2,10,15,6,12,5,4,1,12,5} 
 
 
In QMRAspot, 10,000 Monte Carlo (MC) samples are generated from all 
distributions. This number of Monte Carlo samples is sufficient (Teunis and 
Havelaar, 1999). The source water concentration of the index pathogens, Csource, 
is Gamma distributed with parameters r and λ/s.  For recovery R, and treatment 
steps z1…z6, Beta-distributed MC samples are generated. 
For the unboiled drinking water consumption, W litre, MC samples of lognormal 
distributions are generated, but in case of the WHO-data set, a fixed value of 2 
litres is used. Monte Carlo samples of the dose response parameters α and β are 
provided as pregenerated data and included in the tool in a packed form to save 
memory space. 



RIVM Report 2014-0020 

 Page 54 of 71 

  



RIVM Report 2014-0020 

 Page 55 of 71
 

9 Exposure and infection risk 

Exposure to the index pathogens is a given as the dose D=CsourceW, the number 
of ingested index pathogens per person per day and is calculated by multiplying 
the MC data of the source, recovery and treatment data (maximum 6 treatment 
steps): 
 
D Csource

1

R
∏ zi
6
i‐1 W  

(4) 
 
Infection risk per person per day is calculated by applying the hypergeometric 
dose-response relation with Beta-distributed dose response parameters α and β 
(Teunis and Havelaar 2000). The formula for calculating the risk of infection for 
a specific dose is calculated as follows (Teunis and Havelaar 2000):  
 
Pinf,person,day 1‐1F1 α,α β;‐D  (5) 
 
where 1F1 is the confluent hypergeometric function. 
 
The probability that a person acquires no infection on the i-th day equals 
 
1‐Pinf,person,day,i (7) 
 
The probability that a person acquires no infection on any day in a year equals 
 
1‐Pinf,person,day,1 1‐Pinf,person,day,2 … 1‐Pinf,person,day,365 ∏ 1‐Pinf,person,day,i

365
i‐1  (8) 

 
Note that the daily risks are assumed to be independent of each other. 
Thus, the distribution of the probability or risk that a person per year is infected 
at least once, denoted simply as the infection risk per person per year, is 
calculated from MC sampling from the daily infection risk (Teunis et al., 1997): 
 
Pinf,person,year 1‐∏ 1‐Pinf,person,day,i

365
i‐1  (9) 
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10 Dose response data 

Applied dose response relations were generally derived from studies in which a 
specific strain of the index pathogen was given to human volunteers (Teunis et 
al., 1996, 2002a, 2002b). However, one pathogen strain does not represent the 
suite of strains that may occur in source waters for drinking water production. A 
hierarchical dose response relation, as was performed for multiple isolates of 
Cryptosporidium parvum, produced estimates that differed greatly between 
isolates (Teunis et al. 2002a). Predictions based on multilevel dose response 
relations may aid probabilistic risk assessments such as those presented here to 
properly reflect the variation in pathogen strains. Moreover, dose response data 
from outbreaks may inform the dose response relation as was shown for 
Campylobacter (Teunis et al. 2005b, 2008a, 2010, Thebault et al. 2013). Such 
additions, both hierarchical analysis and the use of outbreak data, could aid the 
estimation of the enterovirus dose response relation for which now the rotavirus 
dose response relation is used. Data are currently not available for this type of 
analysis, and additional research is required. 
A brief overview of published dose response information, including some 
statistics) is given in Table 10.1. Dose response assessments based on 
multilevel models produce estimates for the dose response parameters (α, β) as 
(joint) distributions. For these analyses, no alpha or beta estimates are given in 
Table 10.1. The latter applies to the four index pathogens: enterovirus, 
Campylobacter, Cryptosporidium and Giardia. 
 
2 Table 10.1 Dose response data 

Name  alpha  beta  Low dose 
inf 

= α/(α+β)

ID50  Ref 

Vibrio cholerae  0.508  7.52x107 7.10x10-9 2.13x108 Teunis et al. (1996)
  0.164  0.136 3.79x10-2 1.16x102 Teunis et al. (1996)
Salmonella Typh/Ent  8.53x10-3 3.14 2.71x10-3 6.65 Teunis et al. (2010)
Campylobacter jejuni  0.024  0.011 0.685 1.29 Teunis et al. (2005)
E.coli O157:H7  -  - 6.80x10-3 6.18x102 Teunis et al. (2008a)
   

Cryptosporidum 
parvum 

-  -  0.213  17.6  Teunis et al. (2002) 

Cryptosporidium 
hominis 

8.37x10-11 2.62x10-11  0.762  1.07  Chappel et al.( 2006) 

Giardia lamblia  r=1.99x10-2 1.99x10-2 34.83 Teunis et al. (1996)
Entamoeba coli 0.106  0.295 0.193 2.36x102 Teunis et al. (1996)
   

Norwalk virus (Se+)  0.040  0.055 0.421 18.0 Teunis et al. (2008b)
Norovirus (Se+) -  - 0.515 16.2 Thebault et al. (2013)
Rotavirus  0.167  0.191 0.466 3.46 Teunis et al. (2000)
Echovirus  0.401  227.2 1.77x10-3 1.05x103 Teunis et al. (1996)
The parameters for Norwalk virus (Se+) are built in the code of QMRAspot. 

Low dose: If the exposure or dose is far less than one, 1-1F1(α,α+β;-D) can be simplified to (α/(α+β))D. 
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11 Example peak concentration in source water 

The following example  shows the effect of a peak value of the pathogen 
concentration in the source water. Fig 11.1 shows the values (top left) and 
distribution (bottom left) of the concentration of Enterovirus in the source water 
taken from the reference QMRA-spreadsheet. Of the 35 samples of 
approximately 500 litres, five were found positive. In each of these five samples, 
only one virus particle was detected. All five concentrations are well above the 
95-percentile, and should, therefore, be scrutinized whether they are peak 
concentrations (outliers). The right panel shows the same data again, but 
sample 35 was changed from a non-detect to a sample in which ten virus 
particles were counted. In this case, all the samples with only one virus particle 
now fall within the 95%-area and the only outlier is the simulated peak 
concentration. 
Note how the Gamma distribution parameter values changed between the two 
cases. The distribution for the case with the one high peak concentration value is 
wider (Gamma parameter r is considerably smaller) and the mean concentration 
value has increased by 0.5 log10 (about three times higher; λ is almost five 
times higher). Obviously, this implies that the infection risk will also be about 
three times higher. This example shows that missing a peak concentration may 
lead to a significant underestimation of the risk, of which one is unaware. 
 

 

 
Figure 11.1 Effect of a peak concentration in the source water. Top left: 
Enterovirus concentrations in 35 samples. Top right: One non-detect replaced by 
a ten times higher peak concentration. Bottom left and right: corresponding 
Gamma distributions. 
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12 Example treatment 

12.1 General 

The following example is a QMRA with only one positive sample in the effluent of 
the last treatment step. These are the data from a drinking water company. 
Only the data and analysis of the last treatment step z2 and the risk outcome 
are shown. This QMRA is compared with the case in which the effluent of the last 
treatment step only contained non-detects. 
This situation is encountered regularly. The percentage of non-detects obviously 
is the highest in the last treatment step of a drinking water production. 
 

12.2 Treatment z2, one positive sample in effluent 

 

 
Figure 12.1 Data and analysis of treatment z2 with one positive effluent sample 
 
Over a period of six years, more than 1200 samples were analysed in the 
influent and effluent. Only one sample in the effluent was found positive. Sample 
size of the effluent samples was ten times that of the influent samples. The 
parameter values estimated in QMRAspot for the Beta distribution that describes 
the variability of z2 are α=0.011 and β=68. The low value of α reflects the very 
wide distribution of z2. Although more than 1200 samples were analysed, only 
one bacteria colony was counted, so there is very limited information to estimate 
the removal efficiency of the treatment step. In such a wide distribution, the 
mean value of z carries little information on the reduction of the risk of exposure 
and infection. 
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12.3 Treatment z2, only non-detects in effluent 

 

 
Figure 12.2 Data and analysis of treatment z2 with one non-detects in effluent 
 
Having only non-detects in the effluent implies that there is even less 
information available to estimate removal efficiency of the treatment step, which 
is reflected by an extreme low value α=0.000011 and a histogram showing a 
uniform distribution that spans a huge range of log10z. Obviously, the mean 
value of z is here meaningless. 
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12.4 Infection risk, one positive sample in effluent 

 

 
Figure 12.3 Infection risk (treatment z2 with one positive effluent sample) 
 
Figure 12.3 shows that in the scenario with only one positive sample (count=1),  
the 95-percentile is about 10-4 per person per year. 
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12.5 Infection risk, only non-detects in effluent 

 

 
Figure 12.4 Infection risk (treatment z2 with one non-detects in effluent) 
 
Figure 12.4  shows that in this scenario with only no-detects in the effluent of 
treatment z2,  the 95-percentile is slightly higher compared to the other 
scenario, namely 10-3.6 per person per year. Most striking is  the extremely wide 
range of the predicted infection risk. Compared to the alternative scenario, the 
minimum risk is much lower. The maximum risk is slightly higher than in the 
other scenario. These differences are all due to the fact that in the scenario with 
only non-detects, estimates are much more uncertain. 
 
Using the data of z1 in the example, a number of scenarios were followed in 
which the number of detects in the effluent of z1 was varied to investigate the 
changes in the parameter values of the Beta distribution that describes z1, and 
to make a comparison with the point estimate of z1. 
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12.6 Monte Carlo versus Point estimates 

In understanding the outcomes of the QMRA for drinking water, one is inclined 
to make a comparison with the calculations based on the mean values of each 
individual step in the QMRA on the log10 scale, for example, as in calculating 
total treatment. The above example is used as an example to compare the point 
estimates with the mean value of the Monte Carlo data for treatment step z2 
(Table 12.1). 
The point estimate of fraction z2 is about 2 log10 lower (more removal) than the 
mean of the Monte Carlo data that are sampled from the corresponding Beta 
distribution. Recall that for z2, 1248 influent and 1248 effluent samples were 
analysed. In only one effluent sample, one bacterium was counted. 
It shows that for three cases with one positive sample in which 1, 2 or 3 bacteria 
were counted respectively, that parameter α remains the same, but parameter ß 
gradually decreases  (Table 12.1). The mean of z (and of log10z) remains 
approximately constant, as well as the shape of the Beta distribution, whereas 
the point estimates linearly increases with the counted bacteria.  
The last two scenarios demonstrate the importance of the distribution. If two or 
three counts are distributed over two and three samples respectively, then the 
mean of z decreases, whereas the point estimate is unaffected. This 
demonstrates the superiority of using a distribution to describe the data over a 
point estimate. 
 
3 Table 12.1 Comparison of Monte Carlo data with the point estimate 

of fraction z for treatment step z2. 

Scenario for effluent of z2 α ß Mean 
of z 

Mean 
of 

log10z 

Point 
estimate 

log10 of 
point 

estimate 
Only non-detects 0.000097 0.18 0.00079 -3.1 0 -∞ 
1 count 0.011 68 0.00016 -3.8 1.7x10-6 -5.8 
2 counts/one sample 0.011 65 0.00017 -3.8 3.4x10-6 -5.5 
3 counts/one sample 0.011 63 0.00017 -3.8 5.1x10-6 -5.3 
2 samples with one count 0.0046 11 0.00046 -3.3 3.4x10-6 -5.5 
3 samples with one count 0.0062 8.1 0.00071 -3.1 5.1x10-6 -5.3 
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13 Contact 

For user questions or feedback, please contact QMRAspot@rivm.nl or 
Jack.Schijven@rivm.nl. 
 
To obtain a dataset with the pairs of α and ß parameter values for the dose 
response of the index pathogens as built in the code of QMRAspot, a request 
should be sent to Peter.Teunis@rivm.nl. 
 
Discussions, feedback, questions and answers can be also found in the LinkedIn 
group op QMRAspot. 
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