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Abstract

Background: Little is known about how pre-diagnostic metabolites in blood relate to risk of prostate cancer. We
aimed to investigate the prospective association between plasma metabolite concentrations and risk of prostate
cancer overall, and by time to diagnosis and tumour characteristics, and risk of death from prostate cancer.

Methods: In a case-control study nested in the European Prospective Investigation into Cancer and Nutrition,
pre-diagnostic plasma concentrations of 122 metabolites (including acylcarnitines, amino acids, biogenic amines,
glycerophospholipids, hexose and sphingolipids) were measured using targeted mass spectrometry (AbsoluteIDQ
p180 Kit) and compared between 1077 prostate cancer cases and 1077 matched controls. Risk of prostate cancer
associated with metabolite concentrations was estimated by multi-variable conditional logistic regression, and
multiple testing was accounted for by using a false discovery rate controlling procedure.
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Results: Seven metabolite concentrations, i.e. acylcarnitine C18:1, amino acids citrulline and trans-4-hydroxyproline,
glycerophospholipids PC aa C28:1, PC ae C30:0 and PC ae C30:2, and sphingolipid SM (OH) C14:1, were associated with
prostate cancer (p < 0.05), but none of the associations were statistically significant after controlling for multiple testing.
Citrulline was associated with a decreased risk of prostate cancer (odds ratio (OR1SD) = 0.73; 95% confidence interval (CI)
0.62–0.86; ptrend = 0.0002) in the first 5 years of follow-up after taking multiple testing into account, but not after longer
follow-up; results for other metabolites did not vary by time to diagnosis. After controlling for multiple testing, 12
glycerophospholipids were inversely associated with advanced stage disease, with risk reduction up to 46% per
standard deviation increase in concentration (OR1SD = 0.54; 95% CI 0.40–0.72; ptrend = 0.00004 for PC aa C40:3). Death
from prostate cancer was associated with higher concentrations of acylcarnitine C3, amino acids methionine and
trans-4-hydroxyproline, biogenic amine ADMA, hexose and sphingolipid SM (OH) C14:1 and lower concentration
of glycerophospholipid PC aa C42:4.

Conclusions: Several metabolites, i.e. C18:1, citrulline, trans-4-hydroxyproline, three glycerophospholipids and SM
(OH) C14:1, might be related to prostate cancer. Analyses by time to diagnosis indicated that citrulline may be a
marker of subclinical prostate cancer, while other metabolites might be related to aetiology. Several glycerophospholipids
were inversely related to advanced stage disease. More prospective data are needed to confirm these associations.

Keywords: Acylcarnitines, Amino acids, Biogenic amines, European Prospective Investigation into Cancer and Nutrition
(EPIC), Glycerophospholipids, Hexose, Mass spectrometry, Metabolomics, Prospective study, Prostate cancer risk,
Sphingolipids,

Background
Prostate cancer is the second most commonly diagnosed
cancer in men worldwide [1], but circulating insulin-like
growth factor I is the only established risk factor that is
potentially modifiable [2]. Examination of the metabo-
lome may help us identify novel risk factors for prostate
cancer [3, 4]. Metabolomics is the identification and
quantification of metabolites (i.e. low molecular weight
reactants, intermediates or products of biochemical
reactions) in a biological system, and it is estimated that
the human metabolome comprises many thousands of
metabolites [5, 6]. Since metabolite concentrations are
affected by dietary, lifestyle, environmental and gen-
etic factors, the measurements provide a snapshot of
biological activity [4, 7].
Little is known about how pre-diagnostic metabolite

profiles relate to risk of prostate cancer [8–11]. A lower
risk of overall and aggressive prostate cancer in men with
higher serum concentrations of metabolites related to
energy and lipid metabolism (including α-ketoglutarate,
1-stearoylglycerol and glycerophospholipids) has been
reported [8, 9]. Similarly, a lower risk of overall prostate
cancer has been suggested in men with higher plasma
concentrations of some glycerophospholipids (lysopho-
sphatidylcholines), while a positive association with risk
has been indicated for the glycerophospholipid phosphat-
idylcholine (PC) acyl-alkyl (ae) C30:0, two amino acids
and a biogenic amine [10]. Contrasting results have been
found in a population screened for prostate cancer, includ-
ing positive associations with lipids and inverse associa-
tions with amino acids and peptides [11]. The four
published prospective studies, however, have a relatively

limited number of cases (each less than 380). Only three of
these studies have reported on prostate cancer risk by
tumour characteristics [8, 9, 11], and in each, advanced
stage and high grade tumours were considered together as
one category of aggressive disease rather than separately
[8, 9, 11]. As far as we are aware, there are no published
prospective data on metabolite concentrations and subse-
quent risk of death from prostate cancer.
We report here the results from a large case-control

study nested within the European Prospective Investiga-
tion into Cancer and Nutrition (EPIC) in which we aimed
to prospectively investigate the association between
metabolite concentrations and risk of prostate cancer,
overall and by time to diagnosis and tumour characteris-
tics, and risk of death from prostate cancer.

Methods
Study population
EPIC is a multi-centre cohort study comprising 520,000
men and women from ten European countries recruited
between 1992 and 2000 [12]. It was designed to investi-
gate how diet (intake and biomarkers) is associated with
risk of cancer and other diseases. Among other import-
ant findings, it has helped establish insulin-like growth
factor I as a risk factor for prostate cancer [2, 13].
The 153,400 men in the cohort were recruited from

19 centres in eight countries (Denmark, Germany,
Greece, Italy, the Netherlands, Spain, Sweden and the
UK). At recruitment, detailed information was collected
on dietary intake, lifestyle, anthropometry and previous
disease, and 139,600 men also gave a blood sample [12].
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All participants gave written informed consent to par-
ticipate in the EPIC cohort, and the EPIC study proto-
col was approved by the ethical committees of the
International Agency for Research on Cancer (IARC),
Lyon, France, and the participating centres. Approval
for the current study was obtained from the Internal
Review Board of the IARC (Project No. 14-09) and local
ethics committees (see Declarations).
For the current analysis, men were eligible if they had

blood stored at the central biobank at the IARC (centres
in Germany, Greece, Italy, the Netherlands, Spain and
the UK), the date of blood collection was known and if
no cancer (except non-melanoma skin cancer) had been
diagnosed at the time of blood collection.

Follow-up and case and control selection
Information on cancer incidence, tumour subtypes and
vital status was obtained via record linkage to regional
and national cancer registries, except in Germany and
Greece where active follow-up was used and self-reported
information was verified via health insurance or medical
records and municipality-, hospital- and physician-based
cancer and pathology registries and reports.
Prostate cancer was defined as code C61 in the 10th

revision of the International Statistical Classification of
Diseases and Related Health Problems (ICD-10), and
cases were men diagnosed with prostate cancer after
blood collection and prior to the end of follow-up. For
these analyses, samples were available for cases from
both the first round of centralisation of follow-up data
and a later round of follow-up (with end of follow-up
ranging between centres from 2001 to 2002 and from
2007 to 2008, respectively).
Histological grade was known for 83.8% of cases, and

778 and 124 men were diagnosed with low-intermediate
(Gleason score <8 or coded as well, moderately or poorly
differentiated tumours) and high grade disease (Gleason
score ≥8 or coded as undifferentiated tumours), respect-
ively. Information on tumour stage was available for
61.7% of cases; 456 and 208 men had localised (tumour-
node-metastasis (TNM) system score of ≤ T2 and N0/x

and M0, or stage coded as localised), and advanced stage
tumours (TNM score of T3–4 and/or N1–3 and/or M1, or
coded as advanced), respectively, and 115 men had
aggressive prostate cancer (a subset of advanced stage
disease defined as TNM score of T4 and/or N1–3 and/or
M1), while 549 had non-aggressive disease.
Each case was matched to one control participant,

selected randomly among male cohort participants who
were alive and free of cancer (except non-melanoma
skin cancer) at the time of diagnosis of the case. Match-
ing criteria were study centre, length of follow-up, age
(±6 months), time of day (±1 h) and fasting status (<3,
3–6, >6 h) at blood collection. An incidence density

sampling procedure was used such that a control could
become a case at a later date or be a control for more
than one case.

Blood collection and laboratory analysis
A standardised protocol for blood collection and pro-
cessing was followed, and fasting was not required;
details are published elsewhere [12]. All plasma samples
(citrate anticoagulant) were assayed at the IARC, using
the AbsoluteIDQ p180 Kit (Biocrates Life Sciences AG,
Innsbruck, Austria) and following the procedure recom-
mended by the vendor. A triple quadrupole mass spec-
trometer (Triple Quad 4500; AB Sciex, Framingham,
MA, USA) was used to quantify a total of 142 metabolites.
Samples from matched case-control sets were assayed in
the same analytical batch, each of which included six to
eleven quality control samples of pooled plasma. Labora-
tory personnel were blinded to sample category, i.e. case,
study control or quality control.
The concentration of total prostate-specific antigen

(PSA) at baseline was measured for a previous study [14]
(Additional file 1) and was available for 71.1% of men in
the current study, including 764 controls, for whom 489
had a concentration below 1 ng/ml, and 768 cases.

Exclusion of participants and metabolites
Metabolite data were available for 2169 men (Additional
file 2: Figure S1A). Metabolites were excluded if more
than 15% of men had non-quantifiable assay results
(missing data or results outside the measurable range;
n = 18) or if the overall coefficient of variation (CV)
was higher than 20% (n = 2; Additional file 1; Additional
file 2: Figure S1B; Additional file 3: Table S1 shows the
completeness of assay results and CVs). This left 122
metabolites for the analysis (7 acylcarnitines, 21 amino
acids, 6 biogenic amines, 75 glycerophospholipids (all of
which were phosphatidylcholines, the most abundant
phospholipid in humans [15], denoted lysoPC or PC; for
metabolite nomenclature see Additional file 1), hexose
and 12 sphingolipids (all of which were sphingomyelins
and denoted SM). Men with missing information on any
of the 122 metabolites (n = 1) and men in incomplete
case-control sets were excluded (n = 14), leaving 1077
matched case-control sets in the statistical analysis.

Statistical analysis
Logarithmically transformed metabolite concentrations
were used for all analyses.

Partial correlations were calculated between log-
transformed concentrations of total PSA and metabolites
separately in controls, controls with total PSA <1 ng/ml
and cases, adjusting for age at blood collection (<55, 55–
59, 60–64, 65–69, ≥70 years), body mass index (BMI;
fourths, unknown) and study centre.
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We used conditional logistic regression to estimate
risk of prostate cancer per standard deviation (SD)
increase in metabolite concentrations. Tests for linear
trend were computed for metabolite concentrations as
continuous variables. Departure from linearity was tested
using the likelihood ratio χ2 test comparing models with
the metabolite concentration as a linear term and as a
cubic polynomial, respectively. The analysis was condi-
tioned on the matching variables and further adjusted
for exact age (continuously) in one model, and addition-
ally for BMI (fourths, unknown), smoking (never, past,
current, unknown), alcohol intake (<10, 10–19, 20–39,
≥40 g of alcohol per day, unknown), education (primary,
secondary, degree level, unknown) and marital status
(married or cohabiting, not married or cohabiting,
unknown) in a second model. Results from the two models
did not materially differ, and only results from the latter
model are presented. A model based on fifths of metabolite
concentrations was also computed (Additional file 1).
Similar conditional logistic regression models were fit-

ted for subgroups by time to diagnosis (≤5 vs. >5 years)
and tumour characteristics (low-intermediate vs. high
grade, localised vs. advanced stage and non-aggressive
vs. aggressive disease), and heterogeneity by subgroups
was tested (Additional file 1).
In a sensitivity analysis, we excluded men who were also

in a previous analysis conducted in EPIC-Heidelberg [10]
(91 cases and 11 controls; personal communication,
Tilman Kühn) and resulting in incomplete matched sets.
This left 985 matched sets for this analysis.
All tests of statistical significance were two-sided, and

to account for multiple testing the false discovery rate
was controlled to 0.05 using the Benjamini-Hochberg
method [16] (Additional file 1). All analyses were con-
ducted in the Stata Statistical Software Package, version
14 (Stata Corporation, College Station, TX, USA).

Results
At blood collection, participants were on average
60 years of age (range 40–77 years), and the men
classified as cases were on average 67 years old at
diagnosis (range 47–88 years). No clear differences
were seen in baseline characteristics between cases
and controls (Table 1).
The distribution of metabolite concentrations by case-

control status is shown in Additional file 3: Table S2.
Strong positive correlations were observed within me-

tabolite classes and between glycerophospholipids and
sphingolipids (Additional file 2: Figure S2). Total PSA
and metabolite concentrations were not strongly corre-
lated in controls, controls with low total PSA concentration
or in cases (–0.16 ≤ r ≤ 0.13; Additional file 2: Figure S2;
Additional file 3: Table S3).

Overall prostate cancer
The statistical significance of associations between
metabolite concentrations and overall prostate cancer
risk is shown in Fig. 1, and in Fig. 2 odds ratios (ORs)
and 95% confidence intervals (CIs) are shown for metab-
olites with p < 0.1 (additional results in Additional file 3:
Tables S4 and S5). Conventionally statistically significant
(p < 0.05) lower risks were seen in men with higher con-
centrations of the acylcarnitine C18:1 and the amino
acid citrulline, while higher risks were seen for the
amino acid trans-4-hydroxyproline (t4-OH-Pro), glycer-
ophospholipids PC diacyl (aa) C28:1, PC ae C30:0 and
PC ae C30:2 and sphingolipid SM (OH) C14:1, but none
of the associations were statistically significant after con-
trolling for multiple testing. The strongest association
was with PC ae C30:0, for which the risk was 16% higher
per SD increase in concentration (OR1SD = 1.16; 95% CI
1.04–1.30). There was no evidence of departure from
linearity in the association with prostate cancer risk
for these metabolites, except for C18:1 for which the
test for non-linearity was conventionally significant,
but not significant after controlling for multiple testing
(Additional file 3: Table S4).

Time to diagnosis
Of the cases, 428 (39.7%) were diagnosed within 5 years of
blood collection. A one SD increase in citrulline concen-
tration was associated with a 27% lower risk of prostate
cancer diagnosed within 5 years of blood collection but
not with prostate cancer diagnosed later after blood collec-
tion (OR1SD = 0.73; 95% CI 0.62–0.86; ptrend = 0.0002,
which was significant after controlling for multiple test-
ing, and OR1SD = 1.02; 95% CI 0.90–1.16, respectively;
pheterogeneity = 0.0009; Fig. 3; Additional file 3: Table S6).
Conventionally significant associations were seen in

the first 5 years of follow-up, inversely for three acylcar-
nitines (including C18:1) and positively for two amino
acids and a glycerophospholipid, and for follow-up
beyond 5 years, for t4-OH-Pro, PC aa C28:1 and PC ae
C30:0, although there was no evidence of heterogeneity
by time to diagnosis.

High grade
Conventionally significant inverse associations with high
grade prostate cancer were seen for an acylcarnitine, 24
glycerophospholipids and three sphingolipids, with risk
reductions up to 48% (OR1SD = 0.52, 95% CI 0.35–0.79
for PC aa C32:3; Fig. 4; Additional file 2: Figure S3;
Additional file 3: Table S7); however, the associations
did not remain after correcting for multiple testing.

Advanced stage
After controlling for multiple testing, 12 glycerophospholi-
pids, i.e. lysoPC a C18:0, PC aa C36:2, PC aa C36:3, PC aa
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C38:3, PC aa C38:5, PC aa C40:2, PC aa C40:3, PC aa
C40:4, PC aa C40:5, PC aa C42:4, PC aa C42:5 and PC ae
C40:1, were inversely associated with risk of advanced
prostate cancer, with risk reductions up to 46% (OR1SD =
0.54; 95% CI 0.40–0.72 for PC aa C40:3; Fig. 5; Additional
file 2: Figure S4; Additional file 3: Table S8). For six of
these and three additional glycerophospholipids, the test
for heterogeneity by stage was significant after taking
multiple testing into account, with inverse associations for
advanced disease and no associations for localised disease.
Additionally, conventionally significant associations

with advanced disease were seen for four acylcarnitines,
two amino acids, a biogenic amine, 20 glycerophospholi-
pids and two sphingolipids; all but the amino acid pro-
line were inversely associated with advanced disease.

Aggressive prostate cancer
Conventionally significant associations were seen for 13
metabolites with aggressive prostate cancer. Positive
associations were observed with an acylcarnitine, an
amino acid, a glycerophospholipid, hexose and a sphingo-
myelin, while inverse associations were seen for seven gly-
cerophospholipids and a sphingolipid, but none remained
after controlling the false discovery rate (Fig. 6; Additional
file 2: Figure S5; Additional file 3: Table S9). The strongest
association was with glycerophospholipid lysoPC a
C16:0, for which the estimated risk reduction was 48%
(OR1SD = 0.52, 95% CI 0.31–0.86).

Death from prostate cancer
During follow-up, 144 men died of prostate cancer, and
after excluding matched sets in which the control had
died before the case (n = 13) or vital status was unknown
for the control (n = 4), 127 matched sets were available
for analysis. Seven metabolites were conventionally
significantly associated with death from prostate cancer.

Table 1 Characteristics of 1077 prostate cancer cases and 1077
controls

Characteristic Cases, n = 1077 Controls,
n = 1077

Age at blood collection, years (SD) 60.0 (7.1) 60.0 (7.1)

Height, cm (SD)a 171.7 (6.9) 172.1 (7.1)

BMI, kg/m2 (SD)a 26.8 (3.5) 26.9 (3.5)

Smoking, n (%)a

Never 349 (33.0) 307 (29.0)

Former 467 (44.1) 501 (47.3)

Current 242 (22.9) 252 (23.8)

Alcohol consumption, n (%)a

< 10 g/day 479 (44.8) 480 (44.6)

10–19 g/day 199 (18.6) 201 (18.7)

20–40 g/day 218 (20.4) 221 (20.5)

≥ 40 g/day 174 (16.3) 174 (16.2)

Physical activity, n (%)a

Inactive 292 (28.0) 273 (26.0)

Moderately inactive 328 (31.4) 326 (31.1)

Moderately active 242 (23.2) 246 (23.5)

Active 182 (17.4) 204 (19.4)

Marital status, n (%)a

Married or cohabiting 718 (89.4) 730 (90.2)

Not married or cohabiting 85 (10.6) 79 (9.8)

Educational attainment, n (%)a

Primary or equivalent 413 (41.1) 425 (42.2)

Secondary 369 (36.7) 396 (39.4)

Degree 223 (22.2) 185 (18.4)

Cases only

Age at diagnosis, years (SD) 66.9 (7.0) –

Time to diagnosis, n (%)b

< 2 years 137 (12.7) –

2 to <4 years 177 (16.4) –

4 to <6 years 191 (17.7) –

6 to <8 years 120 (11.1) –

8 to <10 years 136 (12.6) –

≥ 10 years 316 (29.3) –

Year of diagnosis, median (range) 2001 (1994-2008) –

Grade, n (%)a,c

Low-intermediate grade 778 (86.3) –

High grade 124 (13.7) –

Stage, n (%)a,d

Localised 456 (68.7) –

Advanced 208 (31.3) –

Table 1 Characteristics of 1077 prostate cancer cases and 1077
controls (Continued)

Non-aggressive 549 (82.7) –

Aggressive 115 (17.3) –

Death from prostate cancer, n (%)a,e 127 (12.3) –
aUnknown values for some participants; the calculations of percentages
exclude missing values
bTime between blood collection and diagnosis
cGleason score <8 or coded as well, moderately or poorly differentiated for
low-intermediate grade and Gleason score ≥8 or coded as undifferentiated for
high grade
dThe TNM system was used to categorise stages of prostate cancer; localised:
≤T2 and N0/x and M0, or coded as localised; advanced: T3–4 and/or N1–3 and/or
M1, or coded as advanced; and aggressive: T4 and/or N1–3 and/or M1. All
categories are not mutually exclusive, so numbers do not add up; percentages
were calculated separately for localised and advanced, and for non-aggressive
and aggressive
eDeath from prostate cancer (prostate cancer listed as the underlying cause of
death on the death certificate) during follow-up; 144 died of prostate cancer,
but 17 were excluded from further analysis as their matched control had died
before them (n = 13) or vital status was not known for their control (n = 4)

Schmidt et al. BMC Medicine  (2017) 15:122 Page 5 of 14



Men with higher concentrations of an acylcarnitine (C3),
two amino acids (methionine and t4-OH-Pro), a bio-
genic amine (ADMA), hexose and a sphingolipid (SM
(OH) C14:1) were at higher risk, while an inverse associ-
ation was found for a glycerophospholipid (PC aa C42:4;
Fig. 7; Additional file 2: Figure S6; Additional file 3:

Fig. 1 Statistical significance of associations between metabolite
concentrations and risk of overall prostate cancer. The analysis
included 1077 matched case-control sets. Statistical significance was
plotted as –log10(p values). The dashed line represents conventionally
statistical significance at α = 0.05. Filled circles represent positive
associations, and unfilled circles represent inverse associations. The p
values were derived from a conditional logistic regression using log
metabolite concentration as a continuous variable and adjusting for
exact age (continuously), body mass index (fourths; unknown), smoking
(never; past; current; unknown), alcohol intake (<10; 10–19; 20–39;
≥40 g of alcohol per day; unknown), education (primary or none;
secondary; degree level; unknown) and marital status (married or
cohabiting; not married or cohabiting; unknown)

Fig. 2 Odds ratios for overall prostate cancer risk by concentration
of selected metabolites. Metabolites with p for linear trend <0.1
were included in the figure; no associations were statistically
significant after controlling the false discovery rate at α = 0.05
(Benjamini-Hochberg). Odds ratios for one standard deviation
increase in metabolite concentrations, 95% confidence intervals
and p values for linear trend were derived from a conditional
logistic regression using log metabolite concentration divided
by the standard deviation of log metabolite concentration as a
continuous variable and adjusting for exact age (continuously),
body mass index (fourths; unknown), smoking (never; past; current;
unknown), alcohol intake (<10; 10–19; 20–39; ≥40 g of alcohol per
day; unknown), education (primary or none; secondary; degree level;
unknown) and marital status (married or cohabiting; not married or
cohabiting; unknown)
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Table S10). However, the associations did not remain
after controlling for multiple testing.

Sensitivity analysis
Results were not materially changed after excluding the
overlap in participants between the EPIC-Heidelberg
study [10] and our analysis (Additional file 3: Table S11).

Discussion
Main findings
In this prospective study of 122 plasma metabolite con-
centrations and prostate cancer risk, seven metabolites
were associated with risk of overall prostate cancer at a
conventional level of significance but not after correc-
tion for multiple testing; these were from several

Fig. 3 Statistical significance of associations between metabolite concentrations and prostate cancer risk by time to diagnosis. a Five years or less
between blood collection and diagnosis; n = 428 matched case-control sets. b More than 5 years between blood collection and diagnosis; n = 649
matched sets. Statistical significance was plotted as –log10(p values). The dashed and the dotted lines represent conventionally statistical significance
and statistical significance after controlling the false discovery rate (Benjamini-Hochberg), respectively, both at α = 0.05. Filled circles represent positive
associations, and unfilled circles represent inverse associations. The p values were derived from a conditional logistic regression using log metabolite
concentration as a continuous variable and adjusting for exact age (continuously), body mass index (fourths; unknown), smoking (never; past; current;
unknown), alcohol intake (<10; 10–19; 20–39; ≥40 g of alcohol per day; unknown), education (primary or none; secondary; degree level; unknown) and
marital status (married or cohabiting; not married or cohabiting; unknown)
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metabolite classes, suggesting that dysregulation of many
metabolic pathways may be related to prostate cancer.
The results stratified by time to diagnosis suggested that
lower concentrations of citrulline might be a marker of
subclinical prostate cancer, as the association was
observed for disease diagnosed in the first few years after
blood draw only. In contrast, the associations with
others, including t4-OH-Pro, SM (OH) C14:1, PC ae

C30:0 and other glycerophospholipids, did not vary by
time to diagnosis, and these might thus provide insights
into aetiology. Subgroup analysis indicated a possible
link between higher concentrations of several glycero-
phospholipids and decreased risk of high risk tumour sub-
types, especially advanced stage prostate cancer. Similar to
the results for overall prostate cancer, suggested associa-
tions were observed between death from prostate cancer
and seven metabolites from several metabolite classes.

Other studies
Besides the current study, four smaller prospective
studies of metabolomics and prostate cancer risk have
been published; two were nested within the Alpha-
Tocopherol, Beta-Carotene Cancer Prevention Study
(ATBC) [8, 9], one in the EPIC-Heidelberg study [10]
and one in the Prostate, Lung, Colorectal, and Ovarian
Cancer Screening Trial (PLCO) [11] (with 74, 200, 310
and 380 cases, respectively). Comparison of results
from metabolomics studies is not straightforward owing
to differences in population characteristics, biological
medium [17, 18], the technological assay and statistical
tools, including procedures for dealing with the large
number of metabolites. Nonetheless, replication of pos-
sible associations both with specific metabolites and also
more globally with metabolite classes is essential for inter-
pretation of results.
In the two ATBC analyses, mass spectrometry was

used to measure 420 and 626 metabolites, respectively,
samples were fasting serum samples from smokers and
stage and grade were combined to define aggressive
tumours (as opposed to our more restricted definition of
aggressive disease based on tumour stage, nodes and
metastasis but not grade) [8, 9]. Among other metabolite
classes, amino acids, glycerophospholipids and sphingo-
lipids were measured and with some overlap of specific
metabolites with the current study (19 amino acids and
two biogenic amines). The first ATBC analysis [8] did
not find a significant association between citrulline
and prostate cancer, but for overall prostate cancer
the OR per SD increase (0.87, 95% CI 0.62–1.23) was simi-
lar to the observation in our study (0.90, 95% CI 0.82–
0.99). We did not replicate the ATBC results indicative of
a lower risk of prostate cancer (p < 0.05) in men with
higher concentrations of some amino acids, i.e. alanine (for
overall and aggressive prostate cancer), lysine (for overall
and non-aggressive prostate cancer), methionine (for over-
all and aggressive prostate cancer) or phenylalanine (for
overall and non-aggressive prostate cancer). In contrast, we
observed a conventionally significant higher risk of death
from prostate cancer with higher methionine concentra-
tion. The main finding of the first ATBC study was a strong
inverse association between 1-stearoylglycerol, a product of
lipid breakdown, and risk of overall and aggressive

Fig. 4 Odds ratios for high grade prostate cancer by concentration
of selected metabolites. Tumours with Gleason score ≥8 or coded as
undifferentiated were defined as high grade. Metabolites with p for
linear trend <0.05 were included in the figure; no associations were
statistically significant after controlling the false discovery rate at
α = 0.05 (Benjamini-Hochberg). Odds ratios for one standard deviation
increase in metabolite concentrations, 95% confidence intervals
and p values for linear trend were derived from a conditional
logistic regression using log metabolite concentration divided
by the standard deviation of log metabolite concentration as a
continuous variable and adjusting for exact age (continuously),
body mass index (fourths; unknown), smoking (never; past; current;
unknown), alcohol intake (<10; 10–19; 20–39; ≥40 g of alcohol per
day; unknown), education (primary or none; secondary; degree level;
unknown) and marital status (married or cohabiting; not married or
cohabiting; unknown)
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prostate cancer, but we did not have data on this
metabolite. In line with the first ATBC analysis, the
second analysis [9], with no overlap in participants,
showed inverse associations of lipids (including glycero-
phospholipids) and energy metabolites (involved in the
Krebs cycle) with risk of aggressive prostate cancer.
Similarly, we found inverse associations for several gly-
cerophospholipids with risk for high grade, aggressive
(defined based on stage) and especially advanced stage
prostate cancer.
The PLCO analysis used the same metabolomic assay as

the ATBC analyses, although on non-fasting rather than
fasting serum samples, but in contrast to any of the other
studies, participants were all screened for prostate cancer
using an annual PSA test and digital rectal examination
[11]. A lower risk of prostate cancer was suggested
(p < 0.05) in relation to higher concentrations of some
amino acids and their derivatives, including arginine (with
aggressive prostate cancer; defined by combining stage and
grade information) and tryptophan (with overall and
aggressive prostate cancer). We did not replicate these
findings. The reported positive associations with lipids for
overall and aggressive prostate cancer were inconsistent
with the results from ATBC and our findings. These differ-
ences may be due to the screening of the PLCO population
[11], as screening was not common in ATBC [9] or EPIC.
The EPIC-Heidelberg analysis [10] mostly investigated

the same metabolites as we did and used a similar assay.
The strongest finding for overall prostate cancer in both
studies was a suggested (p < 0.05) positive association with
the glycerophospholipid PC ae C30:0 (EPIC-Heidelberg:
ORtop vs. bottom fourth = 1.89, 95% CI 1.06–3.36). Our results
were not materially changed after excluding the small
overlap in participants between the two analyses. In both
EPIC-Heidelberg and our analyses, the results for PC ae
C30:0 did not differ by time to diagnosis. Additionally, the
EPIC-Heidelberg analysis suggested inverse associations

Fig. 5 Odds ratios for advanced stage prostate cancer by
concentration of selected metabolites. Advanced stage tumours
were defined as T3–4 and/or N1–3 and/or M1, using the tumour-node-
metastasis staging system. Metabolites with p for linear trend <0.05
were included in the figure, and values marked in boldface were
statistically significant after allowing for multiple testing using a
false discovery rate controlling procedure at α = 0.05 (Benjamini-
Hochberg). Odds ratios for one standard deviation increase in
metabolite concentrations, 95% confidence intervals and p values
for linear trend were derived from a conditional logistic regression
using log metabolite concentration divided by the standard deviation
of log metabolite concentration as a continuous variable and adjusting
for exact age (continuously), body mass index (fourths; unknown),
smoking (never; past; current; unknown), alcohol intake (<10; 10–19;
20–39; ≥40 g of alcohol per day; unknown), education (primary or
none; secondary; degree level; unknown) and marital status (married or
cohabiting; not married or cohabiting; unknown)
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with three glycerophospholipids (all lysophosphatidylcho-
lines) and positive associations with alanine, proline and
methionine sulphoxide, the latter of which was not mea-
sured in our analysis. Our results for these metabolites
were mainly in the same direction but less strong for over-
all prostate cancer, while we observed stronger inverse as-
sociations for two of the lysophosphatidylcholines with
aggressive disease.

Possible mechanisms
The strongest findings in our study were an inverse
association of citrulline with risk of prostate cancer diag-
nosis within the first 5 years of follow-up, suggested
positive associations of prostate cancer risk with t4-OH-
Pro, SM (OH) C14:1 (for overall and death from prostate
cancer for both metabolites) and PC ae C30:0 (for over-
all and aggressive prostate cancer), and the lower risk of
advanced prostate cancer in relation to glycerophospho-
lipid concentrations. However, relatively little is known

about the potential biological role of these specific
metabolites in carcinogenesis of the prostate.
Citrulline has antioxidant functions and has been

shown to protect DNA and enzymes from reactive oxy-
gen species [19], which might otherwise promote pro-
gression of prostate cancer via continuous proliferation
and impaired apoptosis [20]. In line with our results,
lower urinary concentrations of citrulline have been
observed in patients with prostate cancer compared to
healthy controls [21], perhaps because of altered citrul-
line metabolism in tumour cells. However, whether
citrulline might be useful as a marker of subclinical
prostate cancer needs to be confirmed.
It is not clear why t4-OH-Pro (one variant of hydroxy-

proline) might be related to risk of prostate cancer, but
urinary excretion of hydroxyproline has been previously
recognised as an early marker of bone metastases in
patients with prostate cancer [22, 23], as hydroxyproline
is released from collagen in tumour invasion [24]. While
4-hydroxyproline has also been suggested as a marker of
red and processed meat [25, 26], the evidence does not
suggest an association between these foods and prostate
cancer risk [27].
Standard amino acids have often been reported to dif-

fer between controls and patients with various cancer

Fig. 6 Odds ratios for aggressive prostate cancer by concentration of
selected metabolites. Aggressive tumours were defined as T4 and/or
N1–3 and/or M1, using the tumour-node-metastasis staging system.
Metabolites with p for linear trend <0.05 were included in the figure;
no associations were statistically significant after controlling the false
discovery rate at α = 0.05 (Benjamini-Hochberg). Odds ratios for one
standard deviation increase in metabolite concentrations, 95%
confidence intervals and p values for linear trend were derived from a
conditional logistic regression using log metabolite concentration
divided by the standard deviation of log metabolite concentration
as a continuous variable and adjusting for exact age (continuously),
body mass index (fourths; unknown), smoking (never; past; current;
unknown), alcohol intake (<10; 10–19; 20–39; ≥40 g of alcohol per
day; unknown), education (primary or none; secondary; degree
level; unknown) and marital status (married or cohabiting; not
married or cohabiting; unknown)

Fig. 7 Odds ratios for death from prostate cancer by selected
concentration of metabolites. Metabolites with p for linear trend
<0.05 were included in the figure; no associations were statistically
significant after controlling the false discovery rate at α = 0.05
(Benjamini-Hochberg). Odds ratios for one standard deviation increase
in metabolite concentrations, 95% confidence intervals and p values
for linear trend were derived from a conditional logistic regression
using log metabolite concentration divided by the standard deviation
of log metabolite concentration as a continuous variable and adjusting
for exact age (continuously), body mass index (fourths; unknown),
smoking (never; past; current; unknown), alcohol intake (<10; 10–19;
20–39; ≥40 g of alcohol per day; unknown), education (primary or
none; secondary; degree level; unknown) and marital status (married or
cohabiting; not married or cohabiting; unknown
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types [4, 28], but it is not clear if the associations with
the non-standard amino acids citrulline and t4-OH-Pro
are specific to prostate cancer or not.
A role of sphingomyelins (the type of sphingolipid

investigated here) in carcinogenesis might be explained
by their involvement in cell proliferation, migration and
autophagy [29]. Higher sphingomyelin concentrations in
prostate tumour tissue and patients’ plasma than in
benign prostatic hyperplasia tissue and control partici-
pants, respectively, have been reported [30, 31]. SM
(OH) C14:1 has also been suggested as a marker of
cream intake [25], and intake of dairy products might be
related to prostate cancer risk [32].
All glycerophospholipids investigated here were phos-

phatidylcholines, the homeostasis of which (including
PC ae C30:0) plays a critical role in cell regulation, with
increased synthesis leading to proliferation [33]. Higher
plasma phosphatidylcholine concentrations in patients
with prostate cancer than in controls have been reported
[31], which is in line with the positive association of PC
ae C30:0 with risk. While possible mechanisms for the
inverse associations between several phosphatidylcho-
lines and advanced prostate cancer are not clear, positive
associations have been reported between concentrations
of diacyl-phosphatidylcholines (denoted PC aa Cx:y in
the current paper) and type 2 diabetes [34], which is
linked to a lower prostate cancer risk [35, 36]. The asso-
ciation between phosphatidylcholines and risk might
apply to malignancies in general rather than being pros-
tate cancer specific. Changes in phosphatidylcholine
concentrations have been reported in patients with can-
cers of the bladder, brain, breast, kidney, liver, lung and
ovaries [4, 28, 37], and in the prospective analysis in the
EPIC-Heidelberg subcohort, associations with breast and
colorectal cancer were also suggested [10]. Altered circu-
lating phosphatidylcholine concentrations in men who
are subsequently diagnosed with cancer may be due to
altered lipid uptake and metabolism by rapidly prolifer-
ating cancer cells in subclinical tumours; these metabo-
lites are required for membrane synthesis and lipid-
based cell signalling [38].

Strengths and limitations
To date, this is the largest study of metabolite concen-
trations and risk of prostate cancer. The relatively large
number of participants has enabled us to investigate not
only total risk of prostate cancer but also to conduct
exploratory analyses by time to diagnosis and prostate
tumour characteristics, and of death from prostate can-
cer. Furthermore, the detailed information on covariates
has reduced the risk of confounding driving the results.
The choice of metabolomics assay was determined by

coverage of metabolites of a priori interest (amino acids)

and cost, but use of a targeted assay limits our analysis
to the metabolites covered by the assay.
The study has a number of other limitations. Only one

blood sample was available per participant, which will
attenuate the results if a single measure does not repre-
sent long-term exposure. Reproducibility of metabolites
over 4 months to 2.3 years has been reported to be mod-
erate to high (median interclass correlation coefficients:
0.54–0.70), suggesting that a single measurement may
be adequate for most metabolites [18, 39, 40], although
the reproducibility was lower for some acylcarnitines
and a few amino acids [18, 39]. Secondly, pre-analytical
conditions, e.g. food consumption prior to blood collec-
tion and use of anticoagulant in blood sampling tubes,
could potentially diminish our ability to detect associa-
tions [41–43]. However, fasting status has been found
to explain only a small amount of the variability of me-
tabolite concentrations [41, 44–46], and cases and con-
trols were matched on time since last food or drink to
minimise any risk of bias due to fasting status. Simi-
larly, cases and controls were matched by centre as a
proxy for sample handling. Like other anticoagulants,
use of citrate in plasma samples can affect measure-
ments of metabolites, including amino acids, glycero-
phospholipids and sphingomyelins [42, 43]. Thus, the
metabolite concentrations reported here might not be
directly comparable to concentrations measured in
serum, or in plasma treated with EDTA or heparin.
However, relative risk estimates are unlikely to be
affected, as citrate was used in all samples. Thirdly,
variation in the histological grading and stage classifica-
tion between pathologists and over time could result in
some misclassification of tumours by stage and grade
category [47–50], which in turn might lead to attenu-
ation of risk estimates in subgroup analyses. Finally,
although this is the largest study to date of metabolites
and prostate cancer risk, the numbers and thus the
statistical power are still limited, especially for analyses
of tumour subtypes and death. Furthermore, a relatively
conservative controlling procedure for multiple testing
which does not account for correlations between
metabolites was used.

Future research
The inclusion of data from further incident prostate can-
cer cases and matched controls in future analyses will
increase the reliability of estimates of the associations
between metabolite concentrations and prostate cancer
risk, overall and for tumour subtypes. Dimension-
reduction approaches that allow the investigation of pat-
terns in metabolite profile may also provide further in-
sights into the role of plasma metabolites in prostate
cancer development.
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Conclusions
This large study of pre-diagnostic plasma metabolites
and prostate cancer risk suggested that several metabo-
lites, including acylcarnitines, amino acids, glyceropho-
spholipids and sphingolipids, might be related to
prostate cancer. Analyses stratifying for time to diagno-
sis indicated that low concentrations of citrulline might
be a marker of subclinical prostate cancer, while other
metabolites might be related to aetiology. Higher con-
centrations of several glycerophospholipids might be
associated with lower risk of advanced stage prostate
cancer. These results need to be further investigated in
other large prospective studies with data on prostate
tumour characteristics and death.
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