
LETTER Probing the limits of predictability: data assimilation of

chaotic dynamics in complex food webs

Elias C. Massoud,1* Jef Huisman,2

Elisa Beninc�a,3 Michael C. Dietze,4

Willem Bouten,2, 5 and

Jasper A. Vrugt1, 6

Abstract

The daunting complexity of ecosystems has led ecologists to use mathematical modelling to gain
understanding of ecological relationships, processes and dynamics. In pursuit of mathematical
tractability, these models use simplified descriptions of key patterns, processes and relationships
observed in nature. In contrast, ecological data are often complex, scale-dependent, space-time
correlated, and governed by nonlinear relations between organisms and their environment. This
disparity in complexity between ecosystem models and data has created a large gap in ecology
between model and data-driven approaches. Here, we explore data assimilation (DA) with the
Ensemble Kalman filter to fuse a two-predator-two-prey model with abundance data from a
2600+ day experiment of a plankton community. We analyse how frequently we must assimilate
measured abundances to predict accurately population dynamics, and benchmark our population
model’s forecast horizon against a simple null model. Results demonstrate that DA enhances the
predictability and forecast horizon of complex community dynamics.

Keywords

Data assimilation, ecological models, ecosystems, food webs, forecast horizons, plankton, preda-
tor-prey.

Ecology Letters (2018) 21: 93–103

INTRODUCTION

Ecosystems constitute a complex network of living organ-
isms, which are interconnected and linked with their environ-
ment through a myriad of nutrient cycles, mass and energy
flows. This may give rise to emergent and self-organised
behaviour, where organisms exhibit complex spatial and tem-
poral patterns. Faced with this daunting complexity, ecolo-
gists have developed mathematical models to gain
understanding of ecosystem functioning, to simulate large-
scale experiments, and to predict ecological processes into
the future. However, most ecological models may explain
only a small fraction of the dynamics of the actual ecosys-
tem (Wintle et al. 2003). What is more, due to process
abstraction and spatial aggregation, ecological model param-
eters often do not represent directly measurable ecosystem
quantities and must therefore be estimated indirectly through
calibration using measurements of ecosystem inputs and out-
puts. The ‘calibrated’ model can then be used to predict eco-
logical processes over longer periods of time (Fasham et al.
1990; Sitch et al. 2003).
During the past few decades increasingly larger volumes of

ecological data have become available in response to contin-
ued advances in measurement techniques and the rapid expan-
sion of long-term monitoring networks (Running et al. 1999;

Aanensen et al. 2009; LaDeau et al. 2017). This ever increas-
ing wealth of data provides unique opportunities for ecolo-
gists to enhance ecosystem understanding and characterisation
(Ter Braak & Van Tongeren 1995; Reichman et al. 2011).
Yet, ecological data are often complex, high-dimensional, and
scale-dependent as governed by local interactions and feed-
back loops between organisms individually and their environ-
ment, as well as both predictable (e.g. periodic) and stochastic
changes to the ecosystem (Conway et al. 1970; Beninc�a et al.
2009). An important example of complex dynamics is pro-
vided by Beninc�a et al. (2008) who offered the first long-term
experimental demonstration of chaotic population dynamics
in a complex food web, with species abundances that showed
striking fluctuations over several orders of magnitude. This
study raises important questions about our understanding of
the predictability of ecological processes. First, given the few
examples of chaotic dynamics in complex systems, how often
must we census populations to accurately describe and fore-
cast their dynamics? Beninc�a et al. (2008) relied on twice-
weekly sampling for a period of eight years, a level of effort
difficult to replicate in other systems. Would chaos be detect-
able with a lower sampling frequency? Are there general
insights about sampling frequency that could be extended
from this data set to other systems? Second, the predictability
of this system was previously assessed using mechanism-free
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neural networks (Beninc�a et al. 2008) and wavelets (Beninc�a
et al. 2009). Does the horizon over which we can predict
chaotic dynamics change using mechanistic models? Can we
improve our inference about vital rates by fitting population
models directly to chaotic data?
Answers to these questions rely on our ability to fit models

to data. However, traditional curve fitting methods have trou-
ble differentiating the impacts of multiple sources of uncer-
tainty (initial conditions, parameters, process variability,
observation error) (Clark & Bjornstad 2004). This is particu-
larly important for chaotic dynamics, which by definition are
highly sensitive to variability and where long-term prediction
is fundamentally impossible. In this paper, we advocate use of
advanced statistical methods to improve treatment of model
and measurement errors, and reconcile ecological models with
data (Kendall et al. 1999; Peng et al. 2011; Dietze et al. 2013).
This includes state-of-the-art parameter estimation (Conroy
et al. 1995; Ali et al. 2016) and data assimilation (DA) meth-
ods (Luo et al. 2011; Luo & Schimel 2011). In contrast to
parameter estimation, DA uses observations of system beha-
viour to statistically constrain the state variables (e.g. popula-
tion size), rather than the parameters, within a model of a
system. The archetype of this method, the Kalman filter (KF),
was developed by Kalman (1960) for optimal control of
dynamical systems. DA holds great promise in ecology as it
will help close the gap between ecosystems models and data,
enhance ecological forecasting, partition measurement and
model errors, and provide guidance on ‘optimal’ experimental
design (McMahon et al. 2009; Dietze 2017b). For example,
via integration with inferential ecosystem models, DA can
help further refine wireless sensor networks by weighing the
value of an observation against cost of data collection (Clark
et al. 2001).
Data assimilation has found widespread application and use

in many fields of research, including oceanography (Bertino
et al. 2003; Gehlen et al. 2015), marine ecology (Lawson et al.
1996; Natvik et al. 2001; Dowd 2007; Xiao & Friedrichs
2014), hydrology (Vrugt et al. 2005), glaciology (Granzow
2014), and satellite remote sensing (Dorigo et al. 2007), to
name a few. Furthermore, DA has received operational status
in real-time weather, traffic, tsunami and flood prediction sys-
tems because of its proven ability to enhance significantly the
forecast skill of dynamic system models. In ecology, the inter-
est in DA has grown rapidly during the past decade (Williams
et al. 2005; Chen et al. 2008; Mo et al. 2008; Quaife et al.
2008), to support ecological analysis (Zobitz et al. 2011), to
account for model structural, input and output errors (Luo
et al. 2011), to improve ecological prediction (Niu et al.
2014), to shed new light on model structural errors and pro-
vide guidance on model improvement and data informative-
ness (Sitz et al. 2002; Vrugt et al. 2005; Keenan et al. 2011).
In fact, next generation ecological models are developed con-
scientiously in anticipation of DA applications (Williams et al.
2009; Wu et al. 2009; Peng et al. 2011; Xu et al. 2012).
To date, few authors have used DA to analyse predator-

prey dynamics in complex microbial food webs. Lawson et al.
(1995) developed an adjoint DA method for a simple preda-
tor-prey model but assimilated simulated data, and Vallino
(2000) used DA to constrain organic matter production and

consumption in a compartment-type food web model. Here,
we present the first application of DA to long-term chaotic
population dynamics (Beninc�a et al. 2008). We then investi-
gate how frequently we must assimilate measured abundances
to accurately describe population dynamics and evaluate the
ecological forecast horizon (EFH) (Petchey et al. 2015) of our
population model to determine how far into the future useful
forecasts can be made (Simmons & Hollingsworth 2002). We
benchmark our results against a constant forecast to quantify
the added skill of the two-predator-two-prey model.

MATERIALS AND METHODS

This section presents our application of DA to provide guide-
lines for researchers new to model-data fusion. We first review
our food web data, then discuss the Vandermeer (VD) popu-
lation model (Vandermeer 2004), and then describe the
parameter estimation and DA methods used to close the gap
between observed and simulated abundances. We conclude with
a description of the EFH (Petchey et al. 2015) to evaluate DA
with different VD model parameterisations.

The data set

We use a microbial plankton community isolated from the
Darss-Zingst estuary in the southern Baltic Sea. The structure
of this food web is depicted graphically in Beninc�a et al.
(2008) and consists of bacteria, several phytoplankton species,
herbivorous and predatory zooplankton species, and detriti-
vores. The plankton community was cultured in a laboratory
mesocosm under constant external conditions and sampled
twice weekly for a period of more than 8 years to count popu-
lation abundances of the functional groups. A detailed
description of the mesocosm experiment appears in the Sup-
plementary information (SI) of Beninc�a et al. (2008) and data
preprocessing is discussed in Beninc�a et al. (2009). The final
data set comprises 2656 days and consist of n = 794 observa-
tions of each species’ population count (in (mg fwt L�1)1/4)
with constant measurement interval of Dt = 3.35 days. The
fourth-root power transformation homogenises the variance
of each species population counts by suppressing sharp ups
and downs.
In keeping with Beninc�a et al. (2008), we focus our atten-

tion to the rotifers, calanoid copepods, picocyanobacteria and
nanoflagellates. These k = 4 functional groups have a rela-
tively large presence in our food web, and their abundances
govern much of the population dynamics with oscillations
typical for coupled predator–prey interactions (Beninc�a et al.
2009). The measured abundances are stored in a k 9 n
matrix, ~x, where~signifies observed data.

Coupled predator-prey model

We analyse the dynamics of the two-predator-two-prey com-
munities, using the population model of Vandermeer (1982,
2004). This VD model assumes that the prey species interact
through Lotka–Volterra competition, and are consumed by
predators according to a saturating functional response. If P1
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and P2 denote the abundances of the nanophytoplankton and
picophytoplankton preys, and Z1 and Z2 the abundances of
the calanoid copepods and rotifers (competing predators),
respectively, then the VD model is given by

dP1

dt
¼ r1P1
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1� 1
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�
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HþðbP1þP2Þ�mZ2:

ð1Þ
This system of four ordinary differential equations describes
the coupled interactions of our two competing predators and
two prey species under constant environmental conditions.
The VD model has four state variables, namely x=
{Z1, Z2, P1, P2} and d = 8 parameters, whose values we store
in vector h. This includes the two unitless coefficients a ≥ 0
and b 2 [0, 1] which characterise the competition between the
zooplankton and their predator selectivity, respectively, the
growth rates of the first and second prey, r1 (day�1) and r2
(day�1), respectively, the grazing rate, g (day�1), the carrying
capacity, K ((mg fwt L�1)1/4), the mortality rate, m (day�1)
and functional response, H ((mg fwt L�1)1/4).
We write the VD model as a function

X ¼ V Dðh; x0Þ; ð2Þ
which uses as input the d-vector h = {a, b, r1, r2, g, K, m, H}
of VD model parameters, and a k 9 1 vector ~x0 of initial
population counts (at t = 0), and returns as output a k 9 n
matrix, X of simulated abundances of the two predators and
two preys, respectively, during the 2656 days experimental
period. Bifurcation analyses of X illustrates a range of differ-
ent dynamics, including stable equilibria, limit cycles and
chaos, depending on the values of the VD parameters (Figs
S1–S3). In particular, chaotic dynamics is quite ubiquitous in
the VD model, resulting in complex patterns of synchronous
and asynchronous fluctuations of the four species. Vander-
meer (1982) and Vandermeer (2004) provide a detailed expla-
nation of the VD model, and Beninc�a et al. (2009) analyzes
the coupled predator-prey cycles in our food web.
In this study, we examine three different VD parameterisa-

tions. The first originates from wavelet analysis by Beninc�a et al.
(2009) and is listed in Table 1 under ‘WAVE’. The second param-
eterisation (SODA) is obtained from the measured data using
joint parameter and state estimation with SODA (Vrugt et al.
2005). The third parameterisation, coined INTEL, is also based
on the SODA method but restricts state estimation to those 20%
of the observations with largest population fluctuations. The
underlying methodology is described in the next sections.

Bayesian inference of the VD model parameters

In recent decades, Bayesian inference has emerged as a working
paradigm for modern probability theory, parameter and state
estimation, model selection and hypothesis testing (Vrugt 2016).

Bayesian inference allows for an exact description of parameter
uncertainty (and other sources of uncertainty) by treating the
parameters as probabilistic variables with joint posterior pdf,
pðhj~XÞ. According to Bayes’ theorem, the posterior parameter
distribution depends upon the prior distribution, p(h), which
captures our initial beliefs about the values of the model param-
eters, and a likelihood function, Lðhj~XÞ, which quantifies the
confidence in the parameter values, h, in light of the observed
data, ~X. In the absence of detailed knowledge about the parame-
ter values of our food web, we assume a uniform prior distribu-
tion, p(h), with ranges listed in Table 1. If we further assume the
measurement errors of the population counts to be independent,
zero-mean normally distributed, Nð0; r̂2

vÞ, with constant vari-
ance, r̂2

v , then the likelihood function becomes

Lðhj~X;x0;r̂2
vÞ¼

Yn
t¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2pr̂2

v

p exp �1

2
r̂�2
v

Xk
j¼1

Xn
t¼1

~xjt�xjtðh;x0Þ
� �2" #

;

ð3Þ
where ~xjt and xjt(h, x0) signify the observed and predicted
abundances of the jth species at time t. The summation term
inside the exponent is equivalent to the sum of squared residu-
als commonly used in model fitting. The initial state, x0, is set
equal to the measured population counts of the two predators
and two preys at t = 0.
We generate samples of the posterior parameter distribu-

tion, using Markov Chain Monte Carlo (MCMC) simulation
with the differential evolution adaptive metropolis (DREAM)
algorithm. A detailed description of DREAM appears in
Vrugt (2016). We use ten different Markov chains with start-
ing points drawn from the parameter ranges listed in Table 1.
Convergence of the sampled chains to Pðhj~XÞ is monitored
using the R̂-convergence diagnostic Gelman & Rubin (1992).
This diagnostic compares the within-chain and between-chain
variances of the VD parameters. Convergence is achieved
when R̂j \ 1:2 for all parameters, j = {1, . . ., d}.

Simultaneous parameter and state estimation

The initial state of our food web may be known accurately for
our mesocosm data set, but the assumption of a perfect model
cannot be justified. Indeed, the VD model is a highly simplified
description of the population dynamics in our food web, and
consequently, it may not be able to mimic accurately the
observed abundances. One should therefore not expect the
residuals to satisfy assumptions of normality and independence,
but instead exhibit considerable variation in bias, variance, and
serial correlation under different population counts. We there-
fore consider the SODA method of Vrugt et al. (2005), which
combines state and parameter estimation. Thus, we relax the
assumption of a perfect model and account implicitly for struc-
tural errors of the VD model during parameter estimation.
For the time being, let us assume that the VD parameter

values are known. We write the VD model in a state-space
formulation

xft ¼ V Dðh; xt�DtÞ þ qt; ð4Þ
where xft is a 4 9 1 vector with forecasted abundances of the two
predator and two prey species, respectively, h = {h1, . . ., hd} is
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the d = 8-vector of parameters, and qt is a 4 9 1 process error
vector that accounts for structural inadequacies of the VD
model. The time step, Dt, is equivalent to the interval of
3.35 days between measured abundances. Thus, rather than
using the VD model to simulate the entire 2656 day experi-
ment, the VD model now predicts the one-observation-ahead
abundances of the coupled two-predator-two-prey system in
eqn 1 based on the state, xt�Dt, at time t � Dt and the values
of the parameters, h. If we treat the probability distribution of
xft as our prior estimate of the system state at time t, then at
any time data, ~xt, becomes available, we can derive the poste-
rior forecast state via Bayes’ theorem (see e.g. Vrugt et al.
2013). If the model in eqn 4 is linear, and the measured and
forecast state distribution are multivariate Gaussian, then the
KF (Kalman 1960) provides an analytic solution for the opti-
mal estimate of the population counts in our food web at
each measurement time t as follows

xat ¼ xft þ Ktð~xt � xftÞ; ð5Þ
where xat is a 4 9 1 vector of the posterior state, and
Kt 2 ½0; 1� is a 4 9 4 matrix of weights called the Kalman
gain. The posterior, or analysis, state is our best estimate of
the abundances in the food web and is a weighted average of
the state forecast, xft, and state measurement, ~xt, with weights
determined by their individual uncertainties. The second term
at the right-hand-side of eqn 5 is also called the state innova-
tion, and equates to xat � xft.
The Kalman gain, Kt 2 ½0; 1�, is a 4 9 4 matrix of relative

weights calculated using

Kt ¼ Pf

Pf þ R
¼ PfðPf þ RÞ�1 ð6Þ

where Pf and R signify the 4 9 4 covariance matrices of the
state forecast distribution and state measurement errors,
respectively. If forecast errors are much larger than measure-
ment errors, the analysis state, xat , will track closely the mea-
sured abundances, ~xt. On the contrary, if the measurement
errors are large, the posterior state will be close to xft.
The analysis state now enters the VD model to predict the

abundances at t + Dt, and this two-step process of state

prediction and state analysis is repeated for every next obser-
vation until all population counts have been assimilated by
the VD model. This recursion negates forecast bias, and
helps close the gap between observed and simulated abun-
dances.
The KF provides an analytic formula for the forecast error

covariance matrix, Pf, based on the process error, qt, and
uncertainty in the analysis state, Xa

t , however this formula
only applies to linear models. We therefore make use of the
Ensemble Kalman filter (EnKF), which approximates Pf by
the sample covariance of an ensemble of N different state
forecasts (Evensen 1994). Figure 1 illustrates this approach
and Supplement B explains further our choice for the EnKF
rather than the more generic particle filter.
The performance of the EnKF depends in large part on the

choice of R and Qt, the covariance matrix of the process
error, qt. We make the common assumption that the measure-
ment errors are independent, zero-mean normally distributed
with variance, r̂2

v . Consequently, R ¼ r̂2
vI4, where I4 is the

4 9 4 identity matrix. We follow Evensen (1994) and use tem-
porally correlated process error, qt, in eqn 4

qt ¼ qqt�Dt þ wt; ð7Þ
where q 2 (�1, 1) is the first-order autocorrelation coefficient
of the process errors, and wt is a 4 9 1 draw from a zero-
mean Gaussian distribution with covariance matrix, r̂2

wI4.
Thus far, we have assumed the VD parameter values, h,

and r̂2
v , r̂

2
w and q to be known, which is not particularly real-

istic. We therefore use SODA to jointly estimate the VD
model states and parameters. This method uses an inner
EnKF loop for recursive state estimation conditioned on an
assumed parameter set, and an outer loop with the DREAM
algorithm for batch estimation of pðhj~xÞ. We assume, again, a
uniform prior parameter distribution, p(h), and compute the
likelihood, L(h|Z), of the k 9 n matrix of state forecast
errors, Z (rather than residuals without DA). Consequently,
SODA will produce parameter values that minimise the one-
observation-ahead forecast errors of the VD model. Note,
that if Q is set to a zero matrix (no process noise) then SODA
reduces to regular parameter estimation.

Table 1 Description of the Vandermeer (VD) model parameters, including their lower and upper values, and units

Symbol Description Lower Upper Units WAVE SODA INTEL

b Predator coefficient 10�4 1.0 – 0.1 0.12 (0.26) 0.29 (0.14)

a Prey coefficient 0.0 2.0 – 1.5 1.75 (0.21) 1.36 (0.16)

r1 Growth rate of first prey 0.01 2.5 day�1 0.66 0.08 (0.03) 0.13 (0.16)

r2 Growth rate of second prey 0.01 2.5 day�1 0.66 0.09 (0.04) 0.12 (0.14)

g Grazing rate 0.1 2.5 day�1 1.0 0.11 (0.04) 0.24 (0.06)

K Carrying capacity 0.5 2.5 (mg fwt L�1)1/4 1.0 2.47 (0.09) 2.07 (0.12)

m Mortality rate 0.01 0.7 day�1 0.066 0.05 (0.06) 0.08 (0.08)

H Parameter of functional response 1.0 3.0 (mg fwt L�1)1/4 0.8 1.16 (0.20) 2.39 (0.13)

q First-order autocorrelation of model errors �1.0 1.0 – N/A 0.69 (0.26) �0.35 (0.26)

r̂2
w Variance of model error 0.0 1.0 – N/A 0.35 (0.07) 0.20 (0.16)

RMSE of VD model (no DA: open loop) (mg fwt L�1)1/4 0.63 0.84 0.82

RMSE of VD model (100% DA) (mg fwt L�1)1/4 0.56 0.21 0.22

Ensemble mean innovation (100% DA) (mg fwt L�1)1/4 0.38 0.14 0.14

The columns WAVE, SODA and INTEL lists the (optimised) parameter values derived from wavelet analysis, and joint parameter and state estimation

with SODA using 100% and 20% of the measured abundances for state updating. The bottom part of the table reports the RMSE of the different VD

model parameterisations with and without DA, and the ensemble mean innovation.
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We use an ensemble of N = 100 members. Based on replicate
measurements of the population counts, we assume that
r̂2
v ¼ 0:05, and q and r̂2

w are estimated along with the VD
parameters using the measured predator and prey abundances, ~X.

The ‘Intelligent’ (INTEL) model

As our food web exhibits complex population dynamics, we
should not expect the VD model to track perfectly the observed
abundances, in particular the sharp ups and downs in popula-
tion counts. Yet, state updating may not be strictly necessary
during periods with constant abundances. To investigate this
further, we consider a second and perhaps more ‘intelligent’
model, coined INTEL, whose VD parameters and q and r̂2

w are
estimated with SODA but with state estimation restricted to
20% of the measured record with largest fluctuations in popula-
tion counts. In between these ‘important’ observations, the VD
model is executed without state adjustments.

Reduced measurement frequencies

The SODA parameters assume the continued application of
DA to the entire 2656 day record. This equates to an aver-
age assimilation interval of Dt = 3.35 days. As data collec-
tion may be rather expensive, we investigate how frequently
must we assimilate the measured abundances to describe
accurately population dynamics in our food web? We evalu-
ate the WAVE, SODA and INTEL parameters with state
updates at every Dt = 3.35, 2Dt = 6.70, 5Dt = 16.75 and
10Dt = 33.50 days, thereby assimilating 100, 50, 20 and
10% of the measured abundances of the two predators and
two preys, respectively. This analysis will provide insights
into the relationship between the time interval of successive
abundance measurements and the forecast skill of the VD
model.

Ecological forecast horizon

Data assimilation should enhance the VD model’s ability to track
the observed population dynamics. Yet, state estimation can only
be used ‘in sample’ as it demands measured abundances. To better
understand the ‘out of sample’ performance of the VD model, we
evaluate the EFH of the WAVE, SODA and INTEL parameteri-
sations. Petchey et al. (2015) defined the EFH (p. 597) as ‘... the
dimensional distance for which useful forecasts can be made’.
To compute the EFH, we need to define a criterion that mea-

sures forecast proficiency, and another, related, criterion that clas-
sifies a forecast as being ‘good’ or ‘bad’. This second criterion,
coined the forecast proficiency threshold, or FPT, by Petchey
et al. (2015), defines the horizon for which model predictions are
deemed good enough, and below which forecasts are considered
unacceptable. The EFH now equates to the earliest time it takes
for the forecast proficiency to drop below the FPT. The forecast
proficiency is set equal to the distance between the observed and
predicted abundances. Without formal guidelines on the choice of
the FPT, we use FPT = {0.1, 0.2, 0.3, 0.4, 0.5}, and report the
corresponding EFH of each species and VD parameterisation. To
provide robust EFHs of the predators and preys, we start the VD
model at many different times within the experimental record, ~x
(see Supplement-C for a detailed algorithm).
In practice, one may not use a proficiency threshold to

determine whether a forecast is useful or not, but instead
select a model because it generates the best predictions. There-
fore, we benchmark the EFH of the VD model against that of
a simple null model with forecasts equivalent to the measured
abundances at initialisation.

RESULTS

To simplify discussion and graphical interpretation, we use
colour coding in green, blue and black to differentiate

Figure 1 Schematic illustration of the Ensemble Kalman filter (EnKF) with N = 3 members for a hypothetical data set with n = 3 observations of the

system state. The model forecasts the system state from one time step to the next (blue trajectories). Then, when an observation becomes available (red

dots), the state forecast of each member (grey squares) is updated to the analysis state (black diamonds). This is known as the analysis or update step. The

model then evolves the analysis state of each member to the next observation time. This two-step process of state forecast and state analysis is repeated

until all observations of the time series have been assimilated. The state update, or innovation, it ¼ xat � xft, depends on the variance of the forecast and

measurement error, r2
w and r2

v , respectively. If r
2
v � r2

w then we do not trust much our model forecast, and the analysis state, xat , (black diamonds) will

move close to the data (red dots). In this case, the filter is very responsive to the measured data. On the contrary, if rw
w � r2

v and the measurement errors

are relatively large, then the analysis state will remain in close proximity of the forecast (grey squares), xft. If r
2
w ¼ 0 then xat ¼ xft and it = 0 and state

estimation has no impact on the modelled state trajectory.
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between the results of the WAVE, SODA and INTEL param-
eter vectors of Table 1, respectively.

Parameter estimates and model outputs

Table 1 compares the WAVE values of the VD model param-
eters derived from wavelet analysis (Beninc�a et al. 2009) with
their counterparts of SODA and INTEL. The values in paren-
thesis report the posterior standard deviations of the VD
parameters, and the process error variables q and r̂2

w. Fig-
ure S4 presents box plots of the marginal posterior distribu-
tions of the SODA and INTEL parameters.
The SODA and INTEL values of the VD parameters are in

good agreement, and correspond reasonably well with their
WAVE values. All three parameterisations use values for
a 2 [1.36–1.75], b 2 [0.1–0.3] and m 2 [0.05–0.08], respectively.
This is an encouraging result, as a and b determine the strength
of the coupling between the two-predator–prey systems, and
thus exert a strong control on the simulated abundances. Note,
that WAVE assign much higher values to the prey growth rates,
r1 and r2, and the grazing rate, g. Different factors may con-
tribute to this disparity. Most importantly, the measured abun-
dances may not contain enough information to back out the
gross magnitudes of growth and grazing, and consequently,
inference results in many triplets of r1, r2 and g that produce
similar net effects. This claim is supported by the strong linear
dependencies between r1 and r2 (R = 0.99), and g and m
(R = 0.95) in the posterior parameter distribution.
SODA also estimates the autocorrelation, q, and variance,

r2
w, of the VD process error. As expected, the autocorrelation

is stronger for SODA (q = 0.69) than for INTEL (q = �0.35).
The process error appears to be 2 (INTEL: rw � 0.45) to 2.7
(SODA: rw � 0.59) times larger than the measurement error,
rv = 0.22. This large process error is required to track the
chaotic population oscillations, yet limits the model’s ability
to accurately predict future abundances. Because the model
has no exogenous inputs or heterogeneity, the predictability is
governed by chaotic feedbacks and errors in the VD parame-
ters, process representation, and (initial) state (Dietze 2017a).
What is currently unresolved is the partitioning of process
error, r2

w, between model structure and stochasticity in the
generation of unstable oscillations in the model. If stochastic
variability is independent, the q = 0.69 of SODA suggests that
model structural error dominates. Alternatively, q may be
capturing unmeasured variability in the mesocosm.
Figure 2 displays the population abundances simulated by the

VD model using the WAVE, SODA and INTEL parameters.
While the VD model cannot track the observed abundances
alone, if we assimilate the measured abundances then the perfor-
mance of the VD model improves dramatically (Fig. 3). This is
especially true for the SODA and INTEL parameters, as they
were estimated to minimise the forecast errors, which is confirmed
by the lower root mean square error (RMSE) of their one-obser-
vation-ahead forecast errors after state estimation (Table 1).

Effect of data assimilation frequency

Figure 4 presents bar charts of the RMSE of the forecast
error and mean absolute state innovation of each VD

parameterisation. However, DA hardly enhances the perfor-
mance of the WAVE parameters, the forecast proficiency of
SODA and INTEL steadily improves with increasing assimila-
tion frequency. As a consequence, the SODA and INTEL
parameters require, on average, smaller state innovations to
negate prediction bias and track the observed population
counts. Detailed analysis of the state innovations can help
pinpoint model structural errors (Vrugt et al. 2005). Yet, our
attempts to correlate state innovations to each species’ popu-
lation cycle or to other species counts in the food web were
unsuccessful.
Altogether, INTEL most efficiently uses DA, with forecast

errors that are relatively low per unit effort, if state estimation
is applied to every fifth forecast (� 17 days). This limit is
consistent with the time scale of predictability (15–30 days)
inferred by Beninc�a et al. (2008).

Model predictability: forecast horizons

Figure 5 presents the EFH of each species as function of the
forecast proficiency threshold (FPT). For completeness, we
also include the EFH of a constant forecast (coined NULL)
equal to the measured population counts at the start of the
prediction period. The null model exhibits a forecast horizon
that is systematically larger than the VD model for all species
but the Copepods. This is most evident at large FPTs, and
testifies to the large process noise of the VD model. The
SODA and INTEL parameters exhibit, on average, the small-
est forecast errors. In other words, for a given proficiency
threshold, the SODA and INTEL parameters can predict fur-
ther into the future than their WAVE estimates. This trans-
lates into a forecast horizon of SODA/INTEL that is just a
few days larger than WAVE if FPT = 0.1 and grows rapidly
to 20–40 days for FPT = 0.5. What is more, the two zoo-
plankton species exhibit a much larger forecast horizon with
SODA, INTEL and NULL than their phytoplankton counter-
parts. As zooplankton regulate the phytoplankton populations
by consumption, they exhibit slower population dynamics,
which increases their timescale of predictability. This differ-
ence in forecast horizon amounts to a few days if FPT = 0.1
but increases to about 20 days if FPT = 0.5. Note that the
forecast horizons increase nonlinearly with FPT.

DISCUSSION

Species abundances in ecological communities can display
complex non-equilibrium dynamics (May 1973; Hanski et al.
1993; Becks et al. 2005; Beninc�a et al. 2008, 2015). A charac-
teristic feature of chaotic systems, is that long-term prediction
of the system’s trajectory is fundamentally impossible (Stro-
gatz 1995). How then should we make predictions for com-
plex multi-species communities?
The weather may provide a case in point. The chaotic

dynamics of weather models (Lorenz 1963), limits the time
horizon for reliable weather forecasts to about 1–2 weeks.
This forecast skill can be enhanced by assimilating monitor-
ing data from meteorological stations. This DA process uses
the incoming observations to update the modelled state
variables. Our results demonstrate that ecological models
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may benefit from a similar DA approach. We have used
DA with the EnKF to fuse the simulated abundances of
the two-predator-two-prey VD model with observed popula-
tion counts. The state adjustments of the EnKF negate, at
least in part, a high sensitivity of the VD model to initial
conditions (chaos) and process errors, and allow system
dynamics to be better described. Indeed, our results with
SODA demonstrate that joint parameter and state estima-
tion enhances considerably the predictive skill of the VD
model. The SODA approach considers explicitly multivariate
parameter correlations and trade-offs, and avoids any bias
from individual estimation.
The results provide interesting insights into the biology of

the experimental system. In general, a value of a > 0 in the
VD model illustrates that the two predator-prey systems are
coupled through competition, and a value of b > 0 demon-
strates that both predators feed on both prey species (Van-
dermeer 2004; Beninc�a et al. 2009). For all three parameter
sets, we consistently found a value of a > 1, which indicates
that interspecific competition between the two phytoplankton
groups (picocyanobacteria and nanoflagellates) was larger
than intraspecific competition. In the absence of predation,
this would favour competitive exclusion, where the initial
conditions determine which of these two phytoplankton
groups would win. Hence, the coexistence of these two phy-
toplankton groups is mediated by predation. Moreover, all
three parameter sets consistently found a relatively low value
for b, which implies that there is little diet overlap between
the rotifers (feeding mainly on the picocyanobacteria) and
calanoid copepods (feeding mainly on the nanoflagellates).
According to the VD model, strong coupling through com-
petition (high a) and weak coupling through predation (low
b) will lead to anti-phase oscillations of the two predator-
prey systems (Vandermeer 2004). That is, when the pico-
cyanobacteria go up, the nanoflagellates go down (and vice
versa). Similarly, when the rotifers go up, the calanoid cope-
pods go down (and vice versa). Indeed, these alternations in
species dominance at both trophic levels are observed in the
time series data of this experiment (Beninc�a et al. 2009).
To assess how often the mesocosm needs to be sampled to

accurately predict population dynamics, we examined the
forecast errors of the WAVE, SODA and INTEL parameteri-
sations, using different assimilation frequencies. In line with
expectations, higher measurement frequencies decrease the
forecast error. Furthermore, measurement frequencies lower
than the forecast horizon had noticeably higher RMSE’s and
much larger state innovations. Ecological monitoring can be
expensive, however, and reductions of the measurement fre-
quency may therefore be attractive. To this end, we intro-
duced an ‘intelligent’ model, called INTEL which restricts
state estimation to those measurement times with largest fluc-
tuations in population counts. This approach was shown to
be the most efficient use of DA. Hence, our results illustrate
that DA not only allows ecologists to fuse their models with
data, but may also provide guidance on measurement design
and the frequency and timing of observations.
To assess the impact of modelling approach on forecast hori-

zon, we quantified the forecast proficiency of the VD model,
using different proficiency thresholds. The SODA and INTEL

parameters exhibited much larger forecast horizons than their
WAVE counterparts and a previously published neural net-
work (Beninc�a et al. 2008). However, they do not surpass the
forecast horizons of a simple null model with a constant fore-
cast of each species population count. We cannot confidently
claim why long-term population dynamics in our food web is
unpredictable. First, sudden, chaotic state transitions, make it
fundamentally impossible to predict system dynamics far into
the future. Second, process errors of the VD model limit its
forecast horizon even during periods with stable population
counts. Third, even well-controlled biotic systems are subject to
stochastic perturbations and inhomogeneities. Fourth, parame-
ter errors also contribute to forecast uncertainty.
Process error contributed most to prediction uncertainty,

and its autocorrelation, q = 0.69, suggests the VD model suf-
fers from structural errors. Indeed, the assumption that the
two zooplankton groups share the same values of g, H and m
may be too simplifying as rotifers and copepods are different
organisms, with dissimilar grazing rates, mortality, and prey
treatments. A more exhaustive parameterisation may enhance
the VD model’s ability to describe the coupled predator-prey
oscillations. The observed oscillations may also be impacted
by variations in nutrients or other organisms in the food web,
which were not accounted for in the VD model. Finally, it is
possible that the assumed functional forms in the VD model
fail to capture the responses observed in nature. Further
examination of the time series of state innovations may help
diagnose structural errors.
Although DA improves the forecasting ability of ecological

models, it does not necessarily yield parameter values that bet-
ter describe ecological processes. Without DA, for example,
the SODA and INTEL parameters do not reproduce the spe-
cies’ population oscillations (Fig. 2), a feature that WAVE
replicates.
In conclusion, we have demonstrated that DA is an attrac-

tive approach, as it will help close the gap between ecological
observations and theory, and increase the forecast horizon of
ecosystem models. We look forward to further advances in
ecological forecasting, especially related to systems with chao-
tic dynamics.
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