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Abstract

We discuss an application of probabilistic inversion techniques to a model of
campylobacter transmission in chicken processing lines. Such techniques are
indicated when we wish to quantify a model which is new and perhaps unfamiliar
to the expert community. In this case there are no measurements for estimating
model parameters, and experts are typically unable to give a considered
judgment. In such cases, experts are asked to quantify their uncertainty
regarding variables which can be predicted by the model. The experts’
distributions (after combination) are then pulled back onto the parameter space
of the model, a process termed “probabilistic inversion”. This study illustrates two
such techniques, iterative proportional fitting (IPF) and PARmeter fitting for
uncertain models (PARFUM). In addition, we illustrate how expert judgement on
predicted observable quantities in combination with probabilistic inversion may be
used for model validation and/or model criticism.

1. Introduction

Campylobacter contamination of chicken meat may be responsible for up to 40%
of the annual 100,000 cases of campylobacter-associated gastroenteritis in The
Netherlands, and a similar proportion of an estimated 30 deaths. A recent effort
to rank various control options for campylobacter contamination of chicken
carcasses has led to the development of a mathematical model of a typical
chicken processing line [1] and [2]. This model has been quantified in an expert
judgment study involving 12 experts [3]. Key parameters in the model are
transfer coefficients from the chickens’ skin and intestines to the processing
environment, and from the environment back to the chickens’ skin. Experimental
data on such transfer coefficients is not available, and experts are unable to
quantify their uncertainty on the values of these coefficients. Hence, the model
must be quantified by asking the experts about other quantities which, under
specific circumstances, can be predicted by the model. These quantities typically
involve aggregate phenomena with which experts are sufficiently familiar to
render a judgment. The experts need not endorse or even know the model. Their
uncertainty distributions are combined to form a “decision maker's” distribution,
as described in [3]. The problem then arises of “pulling back” the decision
maker's distributions onto the parameter space of the model. This is an example
of probabilistic inversion and forms the focus of this article. Probabilistic inversion
is increasingly used in risk and consequence analysis. Recent applications may be
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found in [4], [5], [15] and [16], for a discussion see [6] and [7]. A complete
mathematical discussion of the techniques employed here is found in [8].

The “pull-back’ distribution on model parameters may be pushed through the
model to re-predict the quantities assessed by the decision maker. This provides
an opportunity for model validation and/or criticism. If the re-predicted
distributions agree with the original decision maker's distributions, then the model
provides a suitable vehicle for capturing the decision maker's uncertainty. If these
distributions do not agree, then the model is not suitable to represent the
decision maker's uncertainty. In this case the model must be re-evaluated and
possibly revised. For more discussion and examples of this aspect see [5]. The
present study illustrates this, and thereby underscores the value of structured
expert judgment in model criticism, even when the experts are unfamiliar with
the model.

This article begins with a brief description of the mathematical model for chicken
processing lines. A non-technical discussion of probabilistic inversion techniques
based in iterative algorithms is then given. Finally results with the chicken
processing expert data are presented. A final section draws conclusions.

2. The chicken processing line

A schematic representation of a typical broiler chicken processing line is given in
Fig. 1.
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Fig. 1. Broiler chicken processing line.

For campylobacter transmission, the relevant phases are Scalding, defeathering,
evisceration, washing, and chilling. Two types of scalding processes are
considered, namely low and intermediate temperature, as two types of chilling,
namely air and spray chilling. Each phase is modelled as a physical transport
process. A typical phase in the processing line is illustrated in Fig. 2.
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General model (1)
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Fig. 2. A typical phase in the chicken processing model.

Neny represents the number of campylobacter in the physical environment of the
chicken in a processing phase (expressed in cfu, colony forming units). Ney: is the
number on the exterior of the chicken, and G, is the concentration in the
intestines, containing the feces. The transfer coefficients are explained in Table 1
and depend on the processing phase S.

Table 1.

Transfer coefficients for processing phase S

ext.S probability per cfu campylobacter on the exterior (skin and feathers) to move from the
' carcass exterior to the environment, per processing stage S.
[
benv s probability per cfu campylobacter in the environment to move from the environment to the
' carcass exterior, per processing stage S.
[
dint S probability per cfu campylobacter in the leaking feces to move to the environment, per
' processing stage S. (With corresponding probability 1-ain,s per cfu to move from the
interior to the exterior of the carcass directly.)
[
Cenv S probability of inactivation or removal per cfu campylobacter in the environment which is
! not transferred to the carcass exterior, per processing stage S.
[
Wint s(7) amount of feces (gram) that leaks from carcass i at processing stage S.
[
Cext.S probability of inactivation or removal per cfu campylobacter on the carcass exterior which

is not transferred to the environment, per processing stage S.

Mass balance equations are formulated which say, e.g., that the cfu's at the end
of phase S on the exterior equals the humber at the beginning, minus what is
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transferred to the environment or inactivated/removed entirely, plus what moves
onto the exterior during phase S. For more detail, see [2].

Measli) =11 —aeas ] — cens Wew s—1i) + ben s
N onys (i — )4 (1 — a5 Win s (0 03),

Nems(i) = aextsNexs—1(i) + (1 = benvs N1 = cenvs)
N sl = 14 ayy gwis (100,03

In equilibrium we have Neny,s(i)=Neny,s(i-1), so that

ﬂ:xlNﬂl.S— [ Y ""‘"iulc int

MNepvs =

s beav &+ Cenv — Denv Cen
Ideally, we would like to have numerical values for the coefficients in Table 1.
However, experimental data yielding these values are not available. Failing that,
we would like to quantify the uncertainty in the transfer coefficients. Expert
judgment could be applied for this purpose, if the experts had detailed knowledge
of the interactions in each processing phase. Unfortunately, that is not the case.

Experts are however able to quantify their uncertainty regarding the number of
cfu's on a broiler in the situations described below taken from the elicitation
protocol:

At the beginning of a new slaughtering day a thinned-flock is slaughtered in a
“typical large broiler chicken slaughterhouse”. Suppose each chicken of this flock
to be infected with campylobacter, both externally and internally. We suppose
every chicken to be externally infected with 10° campylobacters per carcass and
internally with 10® campylobacters per gram of caecal content at the beginning of
each slaughtering stage (a hypothetical situation). So at the beginning of
scalding, plucking etc., each chicken has this (identical) external and internal
contamination rate.

Question Al. All chickens of the particular flock are passing successively each
slaughtering stage. How many campylobacters (per carcass) will be found after
each of the mentioned stages of the slaughtering process, each time on the first
chicken of the flock?

Experts respond to these questions, for each phase, by stating the 5%, 50% and
95% quantiles of their uncertainty distributions. A sample from the elicitation
protocol is given in the appendix. If distributions on the transfer coefficients in
Table 1 are given, then a distributions, per processing phase, for the elicited
variables can be computed from the mass balance equations by a Monte Carlo
simulation of the following equations (the processing phase S is suppressed in the
notation)
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The variables A1, A2,...,w;, are the variables assessed by the experts. Question
A2 is given in the appendix. Questions B1 and B2 are similar to A1 and A2, but
refer to a flock in which the birds are externally contaminated, but not colonized
(internally). Question C asks for the infection on the 100th broiler of an
uninfected flock which is processed after an internally and externally infected
flock. Wi was queried directly. It is included here to indicate that its distribution
must conform to the decision maker's quantile assessments. For the first 3
processing phases, we have 6 equations; for later phases the intestines are
removed and the variable W, is not defined. In total we have 39 such equations,
counting the alternative processes for scalding and chilling.! The number of
equations is equal to the number of transfer coefficients for the whole line.

Assuming distributions for coefficients on the right-hand sides are known, we
could sample from these distributions and build up distributions for the quantities
on the left hand side. These quantities are assessed by the experts. We would like
these distributions to comply with the quantiles given by the decision maker.

The probabilistic inversion problem may now be expressed as follows: find a joint
distribution over the transfer coefficients, such that the quantiles of the quantities
on left hand sides of the above equations agree with the decision maker's
quantiles. If more than one such joint distribution exists, pick the least
informative of these. If no such joint distribution exists, pick a “best fitting”
distribution.

3. Probabilistic inversion

Let X and Y be n and m-dimensional random vectors, respectively, and let G be a
function from #"to #™. We call x € #" an inverse of ¥ € #" under G if G(x)=y.
Similarly we call X a probabilistic inverse of Y under G if G(X)~.Y, where “~."
means “has the same distribution as”. If I Y [ ¥ € C} js the set of random vectors
satisfying constraints C, then we say that X is an element of the probabilistic
inverse of {Y | Y € C'} under G if G(X)=C. Equivalently, and more conveniently, if
the distribution of Y is partially specified, then we say that X is a probabilistic
inverse of Y under G if G(X) satisfies the partial specification of Y. In the current
context, the transfer coefficients in Table 1 play the role of X, and the left hand
sides of Eq. (1) play the role of Y. That is
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Y = (AL A BB, O Wi 1, A, Bas, ..., C5);

(39 components in total).

The joint distribution of these variables is partially specified by the decision
maker, namely by given 5%, 50% and 95% quantiles. The right-hand sides of (1)
constitute the function G.

If the function G could be inverted analytically, then it would be a simple matter
to compute X as G'(Y). Of course this is generally not possible, and we must
devise other ways to find X. A number of approaches could be considered. A
thorough discussion of this problem is found in [8], and a shorter discussion in
[7]. By far most satisfactory to date are techniques based on sample re-
weighting, and these have been applied to the chicken line model.

The strategy for sample re-weighting can be described informally as follows. We
first choose an initial distribution for X, that is, for the transfer coefficients. This
distribution must be chosen such that, when we sample it a large humber of
times and compute Y via (1), some samples fall within each interquantile interval
for each variable in Y, and all samples are physically possible. The choice of initial
distribution is not further constrained, but it should cover the range of realistic
values. We take N samples from X and compute N samples for Y, yielding N
samples for (X,Y). When drawn from the initial distribution, each of the N samples
has probability 1/N. We now wish to re-weight these N samples such that, if we
re-sample this distribution, drawing each sample (with replacement) with
probability given by its weight, then the quantile constraints on Y are satisfied in
the re-sampled distribution.

There are various strategies for finding the weights [8]; we give an informal
description of two strategies, namely iterative proportional fitting (IPF) and
PARameter fitting for uncertain models (PARFUM). These involve iteratively re-
adjusting an initial set of weights so as to satisfy the constraints. For
convenience, we describe this for one processing phase with 6 elicitation variables
(Y is restricted to 6 components). Each elicitation variable has 4 interquantile
intervals, and the weighted sum of samples falling in each such interval must
satisfy the corresponding quantile constraints. Thus, the sum of the weights of all
samples in which A; falls beneath the decision maker's 5% quantile for variable A;
should be 5%, etc.

Since each sample contains a value for (A4, A, Bi, By, C, W), and each
component falls in one of 4 interquantile intervals, we may represent this sample
as a 6-vector of components, each component taking values in {1,2,3,4}. There
are 4°=4096 possible vectors of this type, and we may think of each such vector
as an interquantile cell containing a number of samples. Not all cells will be
physically possible. It is easy to see from (1) that A;=A,, and B;=B.. Thus, if the
50% quantile for A, is above the 5% quantile for A,, then it is impossible that A,
could be above its median while A, is below its 5% quantile. Fortunately it is not
necessary to figure out which combinations of interquantile intervals are feasible;
sampling X and computing Y via (1) does that automatically. It is well to realize,
however, that a large number of mathematically possible interquantile cells may
actually be unfeasible under the function G. In a typical example for a processing
phase, we would draw 65,000 samples and find that 150-300 of the 4096
interquantile cells were occupied. The weight assigned to each interquantile cell is
simply the total weight of the samples falling in that cell. In our iterative
algorithms, two samples falling in the same cell will be treated in the same way;
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therefore we can restrict our problem to that of finding weights for the non-empty
interquantile cells. When these weights are found, we just distribute the cell
weight uniformly over the samples in the cell to get the sample weights.

Rather than describe the IPF and PARFUM algorithms formally, it is appropriate
here simply to illustrate them on a simple example and report the relevant
mathematical facts. Details can be retrieved from the cited literature. For
purposes of illustration, we consider only 2 elicitation variables, each with 4
interquantile intervals corresponding to the 5%, 50% and 95% quantiles. The
interquantile cells can be represented as a 4x4 matrix; where, for example, a
sample is said to fall in cell (3,2) if it is between the 50% and 95% quantiles for
variable 1 and between the 5% and 50% quantiles for variable 2.

We start with an initial distribution over X and generate an initial distribution over
the interquantile cells, which we represent in Table 2. Note that 6 cells are empty.
The marginals are shown in boldface.

Table 2.

Initial distribution over interquantile cells

0.1966 | 0.0006 | O 0 0.1972

0.0407 | 0.1642 | 0.005 0 0.2099

0 0.0094 | 0.1196 | 0.0155 | 0.1445

0 0 0.0008 | 0.4476 | 0.4484

0.2373 | 0.1742 | 0.1254 | 0.4631

The problem is now to adjust the non-empty cells in Table 2 such that the
margins equal 0.05, 0.45, 0.45, 0.05; which are the probabilities associated with
the decision maker's interquantile intervals.

The IPF algorithm was introduced by [9] and rediscovered by [10]. Its
convergence properties were studied by many, including [11] and [12]. Simply
stated, we first multiply each row by constant, so that the column sums agree
with the target. For the first row this constant is target/row
sum=0.05/(0.1966+0.0006). Then we multiply each column by the constant
(target/column sum) to make the column sums agree with the target, then again
the rows are multiplied by a constant, etc. Fig. 3 illustrates the procedure. The
target margins are shown by the starting distribution. This is first adapted to fit
the row sums, leaving the column sums unfit. Then the first adaptation is adapted
to fit the column sums, thereby unfitting the row sums. Then the row sums are fit
again, then the columns, etc.
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Fig. 3. Iterative proportional fitting.

Csiszar [12] showed that this algorithm converges if there is a distribution whose
non-zero cells are a subset of the non-zero cells of the initial distribution which
satisfies the target margins. In that case IPF converges to the distribution which
has minimum information relative to the starting distribution, in the set of
distributions with the target margins. This distribution may have zero's in cells
where the starting distribution is non-zero. The result holds for arbitrary finite
dimensions, and arbitrary finite numbers of cells per dimension. The target
marginal distributions need not be the same on each dimension.

It is evident that the criterion for convergence becomes more difficult to satisfy as
the number of zero's increases. When the criterion is not met the probabilistic
inversion problem is infeasible and IPF need not converge. In otherwords, there is
no distribution over the non-zero cells in the starting matrix which has the target
margins. In the case of two dimensions, it is known that IPF oscillates between
two distributions, in case of non convergence [13]. Nothing is known about the
behavior of IPF in higher dimensions when the condition for convergence is not
satisfied.

The PARFUM algorithm [8] and [14] differs from IPF in the following way. Instead
of first fitting the row sums, then the column sums, then again the row sums,
etc.; PARFUM successively averages the row and column sum fits. It is
schematized in Fig. 4:
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Fig. 4. The PARFUM algorithm.

The stationary points of the PARFUM algorithm minimize the following functional

FfP} — IfPI'{"".. [it | P}+ IfPL‘l"lulllll fit | P}.

relative to the starting distribution. Here, HQ[P) denotes the relative information
of Q with respect to P. The function F decreases on each PARFUM iteration and
converges to a minimum. If P is a solution, that is, if P's row and column fits
agree with the target, then P***!"' = p = polimnlit o4 that F(P)=0. Most
importantly, if the problem is feasible, then PARFUM converges to a P with
F(P)=0, that is, it converges to a solution [8]. If the problem is not feasible,
PARFUM's stationary points realize the minimum value of F. In practice PARFUM is
observed to converge in this case also, and an example in which PARFUM actually
oscillates between distinct stationary points realizing the same value of F has not
yet been found.

In practical experience, IPF is faster than PARFUM, but both are quite fast on
modern platforms and easy to implement. If the problem is feasible then IPF is
generally preferred. If infeasible, then IPF tends to distribute the lack of fit quite
unevenly and tends to concentrate weight on a small humber of samples. In such
cases PARFUM often gives better results. Of course, if IPF does not cycle, we have
no way of knowing on a finite number of iterations whether it is converging.
Appeal to common sense is appropriate.

These algorithms have several advantages relative to other methods. First, they
are ‘dumb’ in the sense that they do not require intelligent steering. Second, they
avoid computationally expensive matrix manipulations, but simply loop repeatedly
through the interquantile cells. Finally, since rows and columns are altered one at
a time, the whole sample need not be stored in memory, and there is effectively
no limit on the size of problems which can be tackled. There are disadvantages as
well. Most significantly, it is impossible in practice to know if IPF is converging
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without verifying the condition for convergence, and this is just as hard as finding
the solution. PARFUM has a distinct advantage in this regard. In case of
infeasibility neither algorithm yields information on how the original sample might
be extended to yield better solutions.

4. Results

The results with the model described above yielded a very poor fit between the
re-predicted and decision maker distributions for some variables. Table 3 shows
the results for defeathering. Especially bad fits are circled.

Inspection of the experts rationales revealed that the experts distinguished
transfer mechanisms from the exterior to the environment. Campylobactor in the
pores of the skin would be difficult to remove, but on the feathers or skin surface
they would come off more easily. It therefore makes a difference whether the
birds have been contaminated during transport only (giving rise to only
contamination of the exterior) or at the farm (resulting in intestinal colonization
and contamination on the exterior. These two different situations had been the
starting point of questions A and B. The processing model was therefore altered
to include this second transport pathway, as shown in Fig. 5. The coefficient acy is
replaced by two coefficients, a., and a,,. The equations for the elicited quantities
now become:

A1=105X(1'axa)x(1'ca)+1osx(1'aint)xwintx(1_
Ca),A2=A1+bX (axa>< 105+(aint) X WintX 108/(b+cenv'bxcenv)131= 104)( (1'axb' 2
CataypXCa),B2=Bl+bxay,x10%/(b+c.-bxc.),C=(1-b- (2)
Ce+bXCe)99XbX (axa>< 105+(aint) X WintX 108)/(b+cenv'bxcenv)r Wint= Wint-
[Note that parameter symbols are not identical throughout the text, like ca=Cext,
etc.]
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Fig. 5. Processing model with additional transport pathway [from skin is tightly
attached (/), from feathers = loosely attached].

With the second model, the probabilistic inversion yielded better fits, as shown in
Table 4 (this is due to better agreement with the experts’ mental model, and to
the fact that there is now an extra transfer coefficient).

Table 4.

Re-predictions with model (2)

! Variables | Quantile | Scalding low Scalding intermediate | Defeathering

! IPF | PARFUM | IPF PARFUM IPF | PARFUM

! (a) A1 0.05 0.05 | 0.05 0.04 0.04 0.02 | 0.05

! 0.5 0.50 | 0.53 0.42 0.45 0.78 | 0.49
0.95 0.95 | 0.95 0.81 0.86 0.97 | 0.94

! A2 0.05 0.05 | 0.04 0.07 0.07 0.00 | 0.04

! 0.5 0.50 | 0.41 0.70 0.65 0.14 | 0.38
0.95 0.95 | 0.93 0.95 0.97 0.91 | 0.72

! B1 0.05 0.05 | 0.05 0.05 0.05 0.02 | 0.04

! 0.5 0.50 | 0.50 0.50 0.50 0.20 | 0.36
0.95 0.95 | 0.95 0.95 0.95 0.39 | 0.70
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I
Variables

Quantile | Scalding low Scalding intermediate | Defeathering
! IPF | PARFUM | IPF PARFUM IPF | PARFUM
! B2 0.05 0.05 | 0.05 0.05 0.05 0.25 | 0.29
! 0.5 0.50 | 0.50 0.50 0.50 0.43 | 0.64
0.95 0.95 | 0.95 0.95 0.95 0.93 | 0.96
! C1 0.05 0.05 | 0.08 0.05 0.05 0.01 | 0.08
! 0.5 0.50 | 0.54 0.58 0.46 0.44 | 0.51
0.95 0.95 | 0.96 0.94 0.88 0.99 | 0.94
! Wine 0.05 0.05 | 0.06 0.05 0.05 0.05 | 0.13
! 0.5 0.50 | 0.54 0.50 0.48 0.50 | 0.55
0.95 0.95 | 0.96 0.95 0.91 0.95 | 0.96
! Variables | Quantile | Evisceration Washing Cooling air Cooling spray
! IPF | PARFUM | IPF PARFUM IPF | PARFUM | IPF | PARFUM
! (b) A1 0.05 0.05 | 0.05 0.05 0.05 0.00 | 0.04 0.05 | 0.05
! 0.5 0.50 | 0.51 0.50 0.51 0.05 | 0.39 0.53 | 0.50
0.95 0.95 | 0.95 0.95 0.95 0.95 | 0.96 1.00 | 0.98
! A2 0.05 0.05 | 0.05 0.05 0.05 0.05 | 0.39 0.05 | 0.06
! 0.5 0.50 | 0.49 0.50 0.49 0.50 | 0.67 0.50 | 0.51
0.95 0.95 | 0.95 0.95 0.95 0.95 | 0.96 0.95 | 0.94
! B1 0.05 0.05 | 0.05 0.05 0.05 0.01 | 0.04 0.05 | 0.06
! 0.5 0.50 | 0.50 0.51 0.51 0.05 | 0.39 0.53 | 0.54
0.95 0.95 | 0.95 0.95 0.95 0.91 | 0.94 1.00 | 0.98
! B2 0.05 0.05 | 0.05 0.05 0.05 0.00 | 0.04 0.05 | 0.04
! 0.5 0.50 | 0.50 0.50 0.49 0.05 | 0.39 0.50 | 0.44
0.95 0.95 | 0.95 0.95 0.95 0.90 | 0.93 0.95 | 0.92
| c1 0.05 0.05 | 0.05 #* #* 0.05 | 0.05 0.05 | 0.05
! 0.5 0.50 | 0.50 # # 0.50 | 0.50 0.50 | 0.49
0.95 0.95 | 0.95 * * 0.95 | 0.95 0.95 | 0.93
l Wint 0.05 0.05 | 0.05 + A + A + 4 + 4 L + A
l 0.5 0.50 | 0.50 # o # Bk # =¥ # o
0.95 0.95 | 0.95 # ok &k £ £ =3 &

* Degenerate distribution.
** Not present in this phase.
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The bold values indicate the solution chosen. We see that the PARFUM solution
was chosen in 3 of the seven cases. There is still lack of fit, in particular for
defeathering and cooling air. However, overall, the model revision has produced a
better fit. It is a truism that no model is fully adequate to reality. Information
regarding the degree and locus of misfit is extremely valuable. The methods
discussed here provide such information. The alternative is to search for
compliant experts who will assess model parameters directly (and often
anonymously); this cannot lead to model improvement.

5. Conclusions

In risk modelling, we must frequently employ expert judgment to assess model
parameters which are not directly observable, and about which experimental
evidence is lacking. The model under consideration may be new and even
unknown to the experts. In such situations it is impossible to query experts
directly about parameters in the model. We can ask experts about quantities
predicted by the model with which they have some experience and some feeling.
The problem then arises, how we should pull the experts’ uncertainty distributions
on the query variables back onto the parameters of the model. This problem is
termed probabilistic inversion. Iterative sample re-weighting methods are
available to solve such problems, as illustrated in the model of chicken processing
lines. IPF and PARFUM are easy to implement and have a theoretical foundation.
They provide useful tools for the practicing risk modeller.

The present study illustrates a fruitful interaction between the modellers and the
experts. The first model discussed above lacked an important transfer
mechanism, and this caused a serious lack of fit between the experts’
distributions and the re-predicted distributions emerging after probabilistic
inversion. Studying the experts’ rationales led to a revision of the model and a
good fit between the experts’ and the re-predicted distributions.
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Appendix. Sample of elicitation protocol

The assumptions in short:

e “Typical large broiler chicken slaughterhouse” in the Netherlands.

e Average day of the year (all seasons).

¢ At the beginning of the new slaughtering day campylobacter is absent in the
slaughterhouse.

¢ All machines are functioning well.

e Thinned-flocks of 10,000 chickens each.

e The chickens of the flocks are uniform in size and weight.

e The broiler house might have been clean (dry) or dirty (wet).

e Time of fasting is 6 h, travelling time 3 and 4 h and waiting time is ca. 2 h.
¢ In the scalding tank the principle of counter current is used.

e Low scalding temperature is 50-52 °C and intermediate scalding temperature is
55-56 °C.

Part A—A positive flock: At the beginning of a new slaughtering day a thinned-
flock is slaughtered in a “typical large broiler chicken slaughterhouse”. Suppose
each chicken of this flock to be infected with campylobacter, both externally and
internally. We suppose every chicken to be externally infected with 10°
campylobacters per carcass and internally with 108 campylobacters per gram of
coecal content at the beginning of each slaughtering stage (a hypothetical
situation). So at the beginning of scalding, plucking, etc., each chicken has this
(identical) external and internal contamination rate.

Question A1l: All chickens of the particular flock are passing successively each
slaughtering stage. How many campylobacters (per carcass) will be found after
each of the mentioned slaughtering stages, each time on the first chicken of this
flock?

Number of campylobacters (per carcass) on the first chicken of the flock after/at the end of each
slaughtering stage.

Slaughtering stage 5th 50th 95th

1. Scalding

Low

Intermediate

2. Plucking

3. Evisceration

4. Washing
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5. Chilling

Complete air-chilling

Spray-chilling

Question A2: All chickens of the particular flock are passing successively each
slaughtering stage. How many campylobacters (per carcass) are found after each
of the mentioned slaughtering stages, each time on the /ast chicken of this flock?

Number of campylobacters (per carcass) on the final chicken of the flock after/at the end of each
slaughtering stage.

Slaughtering stage 5th 50th 95th

1. Scalding

Low

Intermediate

2. Plucking

3. Evisceration

4. Washing

5. Chilling

Complete air-chilling

Spray-chilling

Part B—An externally infected flock: At the beginning of a new slaughtering day a
thinned-flock is slaughtered in a typical large broiler chicken slaughterhouse in
the Netherlands. Suppose every chicken of this flock to be externally infected with
campylobacter. Internally all chickens are free from campylobacter. Suppose each
chicken to have an external infection with 10* campylobacters per carcass at the
beginning of each slaughtering stage (a hypothetical situation). So, at the
beginning of scalding, plucking etc. each chicken has this (identical) external
contamination rate.

Question B1: All chickens of the particular flock are passing successively each
slaughtering stage. How many campylobacters (per carcass) are found after each
of the mentioned slaughtering stages, each time on the first chicken of this flock?

T
Number of campylobacters (per carcass) on the first chicken of the flock after/at the end of each

slaughtering stage.

[
Slaughtering stage 5th 50th 95th

[
1. Scalding

[
Low




Reliability Engineering & System Safety Volume 91, Issues 10-11 , October-
November 2006, Pages 1364-1372 The Fourth International Conference on
Sensitivity Analysis of Model Output (SAMO 2004) - SAMO 2004

Intermediate

2. Plucking

3. Evisceration

4. Washing

5. Chilling

Complete air-chilling

Spray-chilling

Question B2: All chickens of the particular flock are passing successively each
slaughtering stage. How many campylobacters (per carcass) are found after each
of the mentioned slaughtering stages, each time on the /ast chicken of this flock?

Number of campylobacters (per carcass) on the last chicken of the flock after/at the end of each
slaughtering stage.

Slaughtering stage 5th 50th 95th

1. Scalding

Low

Intermediate

2. Plucking

3. Evisceration

4. Washing

5. Chilling

Complete air-chilling

Spray-chilling

! The decision maker considered variable C for washing degenerate, i.e. zero with
probability 1. Removing this would give 38 equations.



