Loading...
Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge.
Stone, Vicki; Miller, Mark R; Clift, Martin J D; Elder, Alison; Mills, Nicholas L; Møller, Peter; Schins, Roel P F; Vogel, Ulla; Kreyling, Wolfgang G; Alstrup Jensen, Keld; Kuhlbusch, Thomas A J; Schwarze, Per E; Hoet, Peter; Pietroiusti, Antonio; De Vizcaya-Ruiz, Andrea; Baeza-Squiban, Armelle; Teixeira, João Paulo; Tran, C Lang; Cassee, Flemming R
Research Projects
Organizational Units
Journal Issue
Title
Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge.
Translated Title
Published in
Environ Health Perspect 2017; 125(10):106002
Abstract
A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology data exist for engineered nanomaterials (NMs) despite clear parallels in their physicochemical properties and biological actions inin vitromodels.