TRAX: a track structure model for nanometer resolution in calculating the response of several single-hit and biological detectors to different radiations
Citations
Altmetric:
Series / Report no.
Open Access
Type
Report
Language
en
Date
1995-06-30
Research Projects
Organizational Units
Journal Issue
Title
TRAX: a track structure model for nanometer
resolution in calculating the response of several single-hit and biological
detectors to different radiations
Translated Title
TRAX - Een ionisatiespoor model met nanometer
precisie in de berekening van het effect van straling voor diverse
single-hit en biologische detectoren
Published in
Abstract
Een 'track structure' (ionisatiespoor) model (TRAX) van
de ruimtelijke energiedepositie door elektronen, ionen en gamma-straling
wordt gepresenteerd. Het model is gebaseerd op fundamentele fysische
principes zoals Coulomb-interactie en het excitatiespectrum van water. Met
het model is het mogelijk om, binnen een groot energiebereik, de 'collision
stopping power', de gemiddelde energie-overdracht per botsing en de
gemiddelde straal van het ionisatiespoor te berekenen. Daarnaast is het
voor een gegeven initieel spectrum van primaire deeltjes mogelijk het gehele
verstrooiingsspectrum van gamma-straling, rontgenstraling, elektronen en
ionen te berekenen alsmede de relatieve bijdrage van alle primaire en
secundaire deeltjes in het energie-absorptieproces. Met het model is de
respons berekend van twee zogenaamde single-hit targets (een radiochrome
kleurenfilm en een alanine dosimeter) en een biologisch systeem (de
inactivering van menselijke fibroblasten) na bestraling met fotonen,
elektronen en diverse ionen. De relatieve respons is aan het model gefit en
de fitparameters worden hier nader besproken. Toepassing van het TRAX-model
geeft inzicht in de relatieve bijdrage van de verschillende primaire en
secundaire deeltjes in het stralingseffect op diverse biologische en
niet-biologische systemen.
Described in this report is a track structure model (TRAX) for the spatial energy deposition of electrons, ions and gamma-rays based on such elementary physical principles as Coulomb interaction and the excitation spectrum of water. The model enables calculation over a wide energy range of the collision stopping power, the average energy transfer per event and the average track radius. Further, for a given initial spectrum of primary particles or gamma-rays, the entire spectrum of secondary particles can be calculated, along with the relative contribution of primary and secondary particles participating in the energy absorption process. The model is used to determine the response of two single-hit detectors (a radiochromic dye film and an alanine detector) and a biological system (the inactivation of human fibroblasts) to gamma-rays, electrons and various ions. The relative response of the systems is fitted using the model and the significance of the fitting parameters is discussed. Use of the model provides insight into the relative contribution of the various primary and secondary particles in the radiation effect on several one-hit dosimeters and biological systems.
Described in this report is a track structure model (TRAX) for the spatial energy deposition of electrons, ions and gamma-rays based on such elementary physical principles as Coulomb interaction and the excitation spectrum of water. The model enables calculation over a wide energy range of the collision stopping power, the average energy transfer per event and the average track radius. Further, for a given initial spectrum of primary particles or gamma-rays, the entire spectrum of secondary particles can be calculated, along with the relative contribution of primary and secondary particles participating in the energy absorption process. The model is used to determine the response of two single-hit detectors (a radiochromic dye film and an alanine detector) and a biological system (the inactivation of human fibroblasts) to gamma-rays, electrons and various ions. The relative response of the systems is fitted using the model and the significance of the fitting parameters is discussed. Use of the model provides insight into the relative contribution of the various primary and secondary particles in the radiation effect on several one-hit dosimeters and biological systems.
Description
Publisher
Sponsors
RIVM
EG/DG12