• Login
    View Item 
    •   Home
    • RIVM official reports
    • RIVM official reports
    • View Item
    •   Home
    • RIVM official reports
    • RIVM official reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of WARPCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherDepartmentThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherDepartment

    My Account

    LoginRegister

    Statistics

    Display statistics

    INTRAVAL phase 2, test case Mol. Simulation of the underground migration experiment

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Authors
    Kooten JJA van
    Uffink GJM
    Type
    Onderzoeksrapport
    Language
    en
    
    Metadata
    Show full item record
    Title
    INTRAVAL phase 2, test case Mol. Simulation of the underground migration experiment
    Translated Title
    [INTRAVAL fase 2, test case Mol. Simulatie van het ondergrondse migratie experiment.]
    Publiekssamenvatting
    Abstract niet beschikbaar
    Mathematical models are frequently used in risk analysis for underground disposal of nuclear waste. The validity of these models is examined in an international validation project INTRAVAL. RIVM participates in INTRAVAL project for the validation of the code METROPOL, a groundwater flow and solute transport program developed at RIVM. Within INTRAVAL several test-cases have been formulated. One of these test cases is an in-situ migration experiment in an argillaceous formation at 220 meters depth at Mol, Belgium. This experiment has been set up to examine whether parameters derived from laboratory experiments may be used for long term predictions on a larger scale. The present report describes the simulations of the experiment with the METROPOL code and it discusses an analytical solution of the problem. The simulation results indicate that the model concept of the METROPOL code provides an adequate description of the tracer migration in the Boom clay at the Mol site. However, to prevent discretization errors, a fine mesh is required to model the process in areas where steep concentration gradients are expected. Application of fine meshes leads to a larger number of nodal points and, consequently, to an increase of required computer memory and CPU time consumption. With respect to the parameters from the laboratory tests, it is shown these can be used for long term predictions of problems at field scale.
    Sponsors
    DGM/SVS EZ
    URI
    http://hdl.handle.net/10029/259440
    Collections
    RIVM official reports

    entitlement

     

    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.