• Login
    View Item 
    •   Home
    • RIVM official reports
    • RIVM official reports
    • View Item
    •   Home
    • RIVM official reports
    • RIVM official reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    RIVM Publications RepositoryCommunitiesTitleAuthorsIssue DateSubmit Date

    My Account

    LoginRegister

    Statistics

    Display statistics

    Modelling Human Exposure to Chemicals in Food

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Authors
    Slob W
    Type
    Report
    Language
    en
    
    Metadata
    Show full item record
    Title
    Modelling Human Exposure to Chemicals in Food
    Translated Title
    [Modellering van humane blootstelling aan stoffen via de voeding.]
    Publiekssamenvatting
    Exposure to foodborne chemicals is often estimated using the average consumption pattern in the human population. To protect the human population instead of the average individual, however, interindividual variability in consumption behaviour must be taken into account. This report shows how food consumption survey data may be used to derive a statistical exposure model (STEM) that succinctly describes intake of chemicals by the human population as a whole. STEM can serve as a general framework for all foodborne chemicals for which short-term fluctuations in intake may be ignored. It can be used to estimate the percentage of the population exceeding intake criteria (e.g., ADI or TDI). By a recent application (concerning the setting of a dioxin standard for cow's milk) it is illustrated that taking interindividual variability in consumption behaviour into account may have a significant impact on policy formulation. Apart from its direct use in risk assessments, STEM fits well into a larger approach, currently in development at RIVM, which aims at the incorporation of interindividual differences in general into risk analysis methodology. STEM can be easily linked to toxicokinetic models to evaluate the relation of interindividual variability in consumption habits with that in internal doses. This constitutes a first step in the development of a risk analysis methodology in which the percentage of the human population at risk is estimated as accurately as possible.<br>
    Publisher
    Rijksinstituut voor Volksgezondheid en Milieu RIVM
    Sponsors
    HIGB
    URI
    http://hdl.handle.net/10029/259809
    Collections
    RIVM official reports

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.