• Assessing the reliability of ecotoxicological studies: An overview of current needs and approaches.

      Moermond, Caroline; Beasley, Amy; Breton, Roger; Junghans, Marion; Laskowski, Ryszard; Solomon, Keith; Zahner, Holly (2017-07)
      In general, reliable studies are well designed and well performed, and enough details on study design and performance are reported to assess the study. For hazard and risk assessment in various legal frameworks, many different types of ecotoxicity studies need to be evaluated for reliability. These studies vary in study design, methodology, quality, and level of detail reported (e.g., reviews, peer-reviewed research papers, or industry-sponsored studies documented under Good Laboratory Practice [GLP] guidelines). Regulators have the responsibility to make sound and verifiable decisions and should evaluate each study for reliability in accordance with scientific principles regardless of whether they were conducted in accordance with GLP and/or standardized methods. Thus, a systematic and transparent approach is needed to evaluate studies for reliability. In this paper, 8 different methods for reliability assessment were compared using a number of attributes: categorical versus numerical scoring methods, use of exclusion and critical criteria, weighting of criteria, whether methods are tested with case studies, domain of applicability, bias toward GLP studies, incorporation of standard guidelines in the evaluation method, number of criteria used, type of criteria considered, and availability of guidance material. Finally, some considerations are given on how to choose a suitable method for assessing reliability of ecotoxicity studies. Integr Environ Assess Manag 2017;13:640-651. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
    • Assessment of Fecal Exposure Pathways in Low-Income Urban Neighborhoods in Accra, Ghana: Rationale, Design, Methods, and Key Findings of the SaniPath Study.

      Robb, Katharine; Null, Clair; Teunis, Peter; Yakubu, Habib; Armah, George; Moe, Christine L (2017-10)
      Rapid urbanization has contributed to an urban sanitation crisis in low-income countries. Residents in low-income, urban neighborhoods often have poor sanitation infrastructure and services and may experience frequent exposure to fecal contamination through a range of pathways. There are little data to prioritize strategies to decrease exposure to fecal contamination in these complex and highly contaminated environments, and public health priorities are rarely considered when planning urban sanitation investments. The SaniPath Study addresses this need by characterizing pathways of exposure to fecal contamination. Over a 16 month period, an in-depth, interdisciplinary exposure assessment was conducted in both public and private domains of four neighborhoods in Accra, Ghana. Microbiological analyses of environmental samples and behavioral data collection techniques were used to quantify fecal contamination in the environment and characterize the behaviors of adults and children associated with exposure to fecal contamination. Environmental samples (n = 1,855) were collected and analyzed for fecal indicators and enteric pathogens. A household survey with 800 respondents and over 500 hours of structured observation of young children were conducted. Approximately 25% of environmental samples were collected in conjunction with structured observations (n = 441 samples). The results of the study highlight widespread and often high levels of fecal contamination in both public and private domains and the food supply. The dominant fecal exposure pathway for young children in the household was through consumption of uncooked produce. The SaniPath Study provides critical information on exposure to fecal contamination in low-income, urban environments and ultimately can inform investments and policies to reduce these public health risks.
    • Comparison of Ultrafine Particle and Black Carbon Concentration Predictions from a Mobile and Short-Term Stationary Land-Use Regression Model.

      Kerckhoffs, Jules; Hoek, Gerard; Messier, Kyle P; Brunekreef, Bert; Meliefste, Kees; Klompmaker, Jochem O; Vermeulen, Roel (2016-12-06)
      Mobile and short-term monitoring campaigns are increasingly used to develop land-use regression (LUR) models for ultrafine particles (UFP) and black carbon (BC). It is not yet established whether LUR models based on mobile or short-term stationary measurements result in comparable models and concentration predictions. The goal of this paper is to compare LUR models based on stationary (30 min) and mobile UFP and BC measurements from a single campaign. An electric car collected both repeated stationary and mobile measurements in Amsterdam and Rotterdam, The Netherlands. A total of 2964 road segments and 161 stationary sites were sampled over two seasons. Our main comparison was based on predicted concentrations of the mobile and stationary monitoring LUR models at 12 682 residential addresses in Amsterdam. Predictor variables in the mobile and stationary LUR model were comparable, resulting in highly correlated predictions at external residential addresses (R2 of 0.89 for UFP and 0.88 for BC). Mobile model predictions were, on average, 1.41 and 1.91 times higher than stationary model predictions for UFP and BC, respectively. LUR models based upon mobile and stationary monitoring predicted highly correlated UFP and BC concentration surfaces, but predicted concentrations based on mobile measurements were systematically higher.
    • Extraction of soil solution by drainage centrifugation-effects of centrifugal force and time of centrifugation on soil moisture recovery and solute concentration in soil moisture of loess subsoils.

      Fraters, Dico; Boom, Gerard J F L; Boumans, Leo J M; de Weerd, Henk; Wolters, Monique (2017-02)
      The solute concentration in the subsoil beneath the root zone is an important parameter for leaching assessment. Drainage centrifugation is considered a simple and straightforward method of determining soil solution chemistry. Although several studies have been carried out to determine whether this method is robust, hardly any results are available for loess subsoils. To study the effect of centrifugation conditions on soil moisture recovery and solute concentration, we sampled the subsoil (1.5-3.0 m depth) at commercial farms in the loess region of the Netherlands. The effect of time (20, 35, 60, 120 and 240 min) on recovery was studied at two levels of the relative centrifugal force (733 and 6597g). The effect of force on recovery was studied by centrifugation for 35 min at 117, 264, 733, 2932, 6597 and 14,191g. All soil moisture samples were chemically analysed. This study shows that drainage centrifugation offers a robust, reproducible and standardised way for determining solute concentrations in mobile soil moisture in silt loam subsoils. The centrifugal force, rather than centrifugation time, has a major effect on recovery. The maximum recovery for silt loams at field capacity is about 40%. Concentrations of most solutes are fairly constant with an increasing recovery, as most solutes, including nitrate, did not show a change in concentration with an increasing recovery.
    • The impact of ambient air pollution on the human blood metabolome.

      Vlaanderen, J J; Janssen, N A; Hoek, G; Keski-Rahkonen, P; Barupal, D K; Cassee, F R; Gosens, I; Strak, M; Steenhof, M; Lan, Q; et al. (2017-07)
      Biological perturbations caused by air pollution might be reflected in the compounds present in blood originating from air pollutants and endogenous metabolites influenced by air pollution (defined here as part of the blood metabolome). We aimed to assess the perturbation of the blood metabolome in response to short term exposure to air pollution.
    • Multipathway Quantitative Assessment of Exposure to Fecal Contamination for Young Children in Low-Income Urban Environments in Accra, Ghana: The SaniPath Analytical Approach.

      Wang, Yuke; Moe, Christine L; Null, Clair; Raj, Suraja J; Baker, Kelly K; Robb, Katharine A; Yakubu, Habib; Ampofo, Joseph A; Wellington, Nii; Freeman, Matthew C; et al. (2017-10)
      Lack of adequate sanitation results in fecal contamination of the environment and poses a risk of disease transmission via multiple exposure pathways. To better understand how eight different sources contribute to overall exposure to fecal contamination, we quantified exposure through multiple pathways for children under 5 years old in four high-density, low-income, urban neighborhoods in Accra, Ghana. We collected more than 500 hours of structured observation of behaviors of 156 children, 800 household surveys, and 1,855 environmental samples. Data were analyzed using Bayesian models, estimating the environmental and behavioral factors associated with exposure to fecal contamination. These estimates were applied in exposure models simulating sequences of behaviors and transfers of fecal indicators. This approach allows us to identify the contribution of any sources of fecal contamination in the environment to child exposure and use dynamic fecal microbe transfer networks to track fecal indicators from the environment to oral ingestion. The contributions of different sources to exposure were categorized into four types (high/low by dose and frequency), as a basis for ranking pathways by the potential to reduce exposure. Although we observed variation in estimated exposure (108-1016 CFU/day for Escherichia coli) between different age groups and neighborhoods, the greatest contribution was consistently from food (contributing > 99.9% to total exposure). Hands played a pivotal role in fecal microbe transfer, linking environmental sources to oral ingestion. The fecal microbe transfer network constructed here provides a systematic approach to study the complex interaction between contaminated environment and human behavior on exposure to fecal contamination.
    • A novel concept in ground water quality management: Towards function specific screening values.

      Swartjes, Frank A; Otte, Piet F (2017)
      This paper is meant to initiate and feed the discussion on a more sophisticated procedure for the derivation and use of groundwater screening values (GSVs). To this purpose, the possibilities and tools for the derivation of function specific GSVs, i.e., GSVs that depend on the actual contact of humans and ecosystems with groundwater and groundwater-related mediums, are elaborated in this study. Application of GSVs geared to the specific use and function of specific groundwater volumes could result in a more effective and cost-efficient groundwater quality management, without compromising the protection of human health and the ecosystem. Therefore, a procedure to derive function specific GSVs was developed. For illustrative purposes, risk limits have been derived for human health and ecological protection targets, for arsenic, benzene, methyl tert-butyl ether (MTBE) and vinylchloride. Agriculture and Nature reserves (combined), Residential and Industrial land uses have been considered and two different groundwater management purposes, i.e., curative and sustainable groundwater management. For each of the four contaminants, this results in a series of risks limits for each function and land use combination. It is shown that for all four contaminants higher groundwater screening values are considered appropriate for less sensitive combinations of function and land use. In the process towards (policy) implementation of these function specific GSV, it is recommended to evaluate the selection of protection targets, the scientific basis of the risk assessment procedures applied and the methodology to assess the time factor for groundwater quality assessment, given the fact that groundwater is a dynamic medium. Moreover, protection levels must be harmonized with national or regional groundwater quality standards and correspond with the requirements of the Groundwater Daughter Directive of the European Union Water Framework Directive. Groundwater plumes that are judged as 'no need for remediation' are not compatible with the Water Framework Directive requirement to take actions to prevent or limit inputs of contaminants, even when no receptor is present. However, the European Commission formulated a series of exemptions, to avoid that the "prevent" requirement would imply an onerous and sometimes unfeasible task. The function specific GSVs derived in this study could be used to identify the groundwater volumes that do not result in an unacceptable risk.
    • Polio and Measles Down the Drain: Environmental Enterovirus Surveillance in the Netherlands, 2005 to 2015.

      Benschop, Kimberley S M; van der Avoort, Harrie G; Jusic, Edin; Vennema, Harry; van Binnendijk, Rob; Duizer, Erwin (2017-07-01)
      Polioviruses (PVs) are members of the genus Enterovirus In the Netherlands, the exclusion of PV circulation is based on clinical enterovirus (EV) surveillance (CEVS) of EV-positive cases and routine environmental EV surveillance (EEVS) conducted on sewage samples collected in the region of the Netherlands where vaccination coverage is low due to religious reasons. We compared the EEVS data to those of the CEVS to gain insight into the relevance of EEVS for poliovirus and nonpolio enterovirus surveillance. Following the polio outbreak in Syria, EEVS was performed at the primary refugee center in Ter Apel in the Netherlands, and data were compared to those of CEVS and EEVS. Furthermore, we assessed the feasibility of poliovirus detection by EEVS using measles virus detection in sewage during a measles outbreak as a proxy. Two Sabin-like PVs were found in routine EEVS, 11 Sabin-like PVs were detected in the CEVS, and one Sabin-like PV was found in the Ter Apel sewage. We observed significant differences between the three programs regarding which EVs were found. In 6 sewage samples collected during the measles outbreak in 2013, measles virus RNA was detected in regions where measles cases were identified. In conclusion, we detected PVs, nonpolio EVs, and measles virus in sewage and showed that environmental surveillance is useful for poliovirus detection in the Netherlands, where live oral poliovirus vaccine is not used and communities with lower vaccination coverage exist. EEVS led to the detection of EV types not seen in the CEVS, showing that EEVS is complementary to CEVS.IMPORTANCE We show that environmental enterovirus surveillance complements clinical enterovirus surveillance for poliovirus detection, or exclusion, and for nonpolio enterovirus surveillance. Even in the presence of adequate surveillance, only a very limited number of Sabin-like poliovirus strains were detected in a 10-year period, and no signs of transmission of oral polio vaccine (OPV) strains were found in a country using exclusively inactivated polio vaccine (IPV). Measles viruses can be detected during an outbreak in sewage samples collected and concentrated following procedures used for environmental enterovirus surveillance.
    • Road traffic noise and registry based use of sleep medication.

      Evandt, Jorunn; Oftedal, Bente; Krog, Norun Hjertager; Skurtveit, Svetlana; Nafstad, Per; Schwarze, Per E; Skovlund, Eva; Houthuijs, Danny; Aasvang, Gunn Marit (2017-10-23)
      Road traffic noise has been associated with adverse health effects including sleep disturbances. Use of sleep medication as an indicator of sleeping problems has rarely been explored in studies of the effects of traffic noise. Furthermore, using registry data on sleep medications provides an opportunity to study the effects of noise on sleep where attribution of sleep problems to noise is not possible.
    • Soil-plant transfer models for metals to improve soil screening value guidelines valid for São Paulo, Brazil.

      Dos Santos-Araujo, Sabrina N; Swartjes, Frank A; Versluijs, Kees W; Moreno, Fabio Netto; Alleoni, Luís R F (2017-11-07)
      In Brazil, there is a lack of combined soil-plant data attempting to explain the influence of specific climate, soil conditions, and crop management on heavy metal uptake and accumulation by plants. As a consequence, soil-plant relationships to be used in risk assessments or for derivation of soil screening values are not available. Our objective in this study was to develop empirical soil-plant models for Cd, Cu, Pb, Ni, and Zn, in order to derive appropriate soil screening values representative of humid tropical regions such as the state of São Paulo (SP), Brazil. Soil and plant samples from 25 vegetable species in the production areas of SP were collected. The concentrations of metals found in these soil samples were relatively low. Therefore, data from temperate regions were included in our study. The soil-plant relations derived had a good performance for SP conditions for 8 out of 10 combinations of metal and vegetable species. The bioconcentration factor (BCF) values for Cd, Cu, Ni, Pb, and Zn in lettuce and for Cd, Cu, Pb, and Zn in carrot were determined under three exposure scenarios at pH 5 and 6. The application of soil-plant models and the BCFs proposed in this study can be an important tool to derive national soil quality criteria. However, this methodological approach includes data assessed under different climatic conditions and soil types and need to be carefully considered.
    • Towards a proportionality assessment of risk reduction measures aimed at restricting the use of persistent and bioaccumulative substances.

      Oosterhuis, Frans; Brouwer, Roy; Janssen, Martien; Verhoeven, Julia; Luttikhuizen, Cees (2017-11)
      International chemicals legislation aims at adequately controlling persistent organic pollutants (POPs) and substances of very high concern (SVHCs), such as persistent, bioaccumulative, and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances, with a view to progressively substitute these substances with suitable less-hazardous alternatives. Using cost-effectiveness analysis (CEA) to assess the (dis)proportionality of measures to control such substances (collectively called "PBT" in the present paper) requires benchmarks. The present paper provides building blocks for possible benchmarks by looking at the cost-effectiveness estimates for regulatory measures that have been applied or considered for various PBT substances. These cost-effectiveness estimates vary widely, and the main factors possibly explaining this variation are discussed. The available cost estimates currently do not allow deriving a value for society's willingness to pay to reduce PBT presence, use, and emissions because decisions referring explicitly to these estimates are scarce. Roughly speaking, the available evidence suggests that measures costing less than €1000 per kilogram PBT use or emission reduction will usually not be rejected for reasons of disproportionate costs, whereas for measures with costs above €50 000 per kilogram PBT such a rejection is likely. More research is needed to strengthen the evidence base and further elaborate a systematic approach toward proportionality benchmarking. Integr Environ Assess Manag 2017;13:1100-1112. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).