• Role of chemical composition and redox modification of poorly soluble nanomaterials on their ability to enhance allergic airway sensitisation in mice.

      Dekkers, Susan; Wagner, James G; Vandebriel, Rob J; Eldridge, Elyse A; Tang, Selina V Y; Miller, Mark R; Römer, Isabella; de Jong, Wim H; Harkema, Jack R; Cassee, Flemming R (2019-10-28)
      NPs of roughly similar sizes with different chemical composition and redox activity, including CeO2, Zr-doped CeO2, Co3O4, Fe-doped Co3O4(using Fe2O3 or Fe3O4) and TiO2 NPs, all showed adjuvant activity. OVA induced immune responses following intranasal exposure of BALB/c mice to 0.02% OVA in combination with 200 μg NPs during sensitization (on day 1, 3, 6 and 8) and 0.5% OVA only during challenge (day 22, 23 and 24) were more pronounced compared to the same OVA treatment regime without NPs. Changes in OVA-specific IgE and IgG1 plasma levels, differential cell count and cytokines in bronchoalveolar lavage fluid (BALF), and histopathological detection of mucosa cell metaplasia and eosinophil density in the conducting airways were observed. Adjuvant activity of the CeO2 NPs was primarily mediated via the Th2 response, while that of the Co3O4 NPs was characterised by no or less marked increases in IgE plasma levels, BALF IL-4 and IL-5 concentrations and percentages of eosinophils in BALF and more pronounced increases in BALF IL-6 concentrations and percentages of lymphocytes in BALF. Co-exposure to Co3O4 NPs with OVA and subsequent OVA challenge also induced perivascular and peribronchiolar lymphoid cell accumulation and formation of ectopic lymphoid tissue in lungs. Responses to OVA combined with various NPs were not affected by the amount of doping or redox activity of the NPs.