• Assessment of Fecal Exposure Pathways in Low-Income Urban Neighborhoods in Accra, Ghana: Rationale, Design, Methods, and Key Findings of the SaniPath Study.

      Robb, Katharine; Null, Clair; Teunis, Peter; Yakubu, Habib; Armah, George; Moe, Christine L (2017-10)
      Rapid urbanization has contributed to an urban sanitation crisis in low-income countries. Residents in low-income, urban neighborhoods often have poor sanitation infrastructure and services and may experience frequent exposure to fecal contamination through a range of pathways. There are little data to prioritize strategies to decrease exposure to fecal contamination in these complex and highly contaminated environments, and public health priorities are rarely considered when planning urban sanitation investments. The SaniPath Study addresses this need by characterizing pathways of exposure to fecal contamination. Over a 16 month period, an in-depth, interdisciplinary exposure assessment was conducted in both public and private domains of four neighborhoods in Accra, Ghana. Microbiological analyses of environmental samples and behavioral data collection techniques were used to quantify fecal contamination in the environment and characterize the behaviors of adults and children associated with exposure to fecal contamination. Environmental samples (n = 1,855) were collected and analyzed for fecal indicators and enteric pathogens. A household survey with 800 respondents and over 500 hours of structured observation of young children were conducted. Approximately 25% of environmental samples were collected in conjunction with structured observations (n = 441 samples). The results of the study highlight widespread and often high levels of fecal contamination in both public and private domains and the food supply. The dominant fecal exposure pathway for young children in the household was through consumption of uncooked produce. The SaniPath Study provides critical information on exposure to fecal contamination in low-income, urban environments and ultimately can inform investments and policies to reduce these public health risks.
    • Influence of vitamin D on key bacterial taxa in infant microbiota in the KOALA Birth Cohort Study.

      Talsness, Chris E; Penders, John; Jansen, Eugène H J M; Damoiseaux, Jan; Thijs, Carel; Mommers, Monique (2017)
      Vitamin D has immunomodulatory properties giving it the potential to affect microbial colonization of the intestinal tract. We investigated whether maternal vitamin D supplemention, maternal plasma 25-hydroxyvitamin D concentration, or direct supplementation of the infant influences key bacterial taxa within microbiota of one month old infants. Infant and maternal vitamin D supplement use was ascertained via questionnaires. Maternal plasma 25-hydroxyvitamin D was determined at approximately the 36th week of pregnancy. In 913 one month old infants in the prospective KOALA Birth Cohort Study, fecal Bifidobacterium spp., Escherichia coli, Clostridium difficile, Bacteroides fragilis group, Lactobacillus spp. and total bacteria were quantified with real-time polymerase chain reaction assays targeting 16S rRNA gene sequences. The association between vitamin D exposure and prevalence or abundance of a specific bacterial group or species was analyzed using logistic or linear regression, respectively. There was a statistically significant negative linear trend between counts of Bifidobacterium spp. and levels of maternal vitamin D supplementation and maternal 25-hydroxyvitamin D quintiles, respectively. In addition, a positive linear trend between quintile groups and B. fragilis group counts was observed. Lower counts of C. difficile were associated with vitamin D supplementation of breast fed infants whose mothers were more likely to adhere to an alternative lifestyle in terms of, e.g., dietary habits. These data suggest that vitamin D influences the abundance of several key bacterial taxa within the infant microbiota. Given that intestinal microbiotic homeostasis may be an important factor in the prevention of immune mediated diseases and that vitamin D status is a modifiable factor, further investigation of the impact of postnatal vitamin D supplementation should be conducted in older infants.
    • Multipathway Quantitative Assessment of Exposure to Fecal Contamination for Young Children in Low-Income Urban Environments in Accra, Ghana: The SaniPath Analytical Approach.

      Wang, Yuke; Moe, Christine L; Null, Clair; Raj, Suraja J; Baker, Kelly K; Robb, Katharine A; Yakubu, Habib; Ampofo, Joseph A; Wellington, Nii; Freeman, Matthew C; Armah, George; Reese, Heather E; Peprah, Dorothy; Teunis, Peter F M (2017-10)
      Lack of adequate sanitation results in fecal contamination of the environment and poses a risk of disease transmission via multiple exposure pathways. To better understand how eight different sources contribute to overall exposure to fecal contamination, we quantified exposure through multiple pathways for children under 5 years old in four high-density, low-income, urban neighborhoods in Accra, Ghana. We collected more than 500 hours of structured observation of behaviors of 156 children, 800 household surveys, and 1,855 environmental samples. Data were analyzed using Bayesian models, estimating the environmental and behavioral factors associated with exposure to fecal contamination. These estimates were applied in exposure models simulating sequences of behaviors and transfers of fecal indicators. This approach allows us to identify the contribution of any sources of fecal contamination in the environment to child exposure and use dynamic fecal microbe transfer networks to track fecal indicators from the environment to oral ingestion. The contributions of different sources to exposure were categorized into four types (high/low by dose and frequency), as a basis for ranking pathways by the potential to reduce exposure. Although we observed variation in estimated exposure (108-1016 CFU/day for Escherichia coli) between different age groups and neighborhoods, the greatest contribution was consistently from food (contributing > 99.9% to total exposure). Hands played a pivotal role in fecal microbe transfer, linking environmental sources to oral ingestion. The fecal microbe transfer network constructed here provides a systematic approach to study the complex interaction between contaminated environment and human behavior on exposure to fecal contamination.
    • Risk factors for gastroenteritis associated with canal swimming in two cities in the Netherlands during the summer of 2015: A prospective study.

      Joosten, Rosa; Sonder, Gerard; Parkkali, Saara; Brandwagt, Diederik; Fanoy, Ewout; Mughini-Gras, Lapo; Lodder, Willemijn; Ruland, Erik; Siedenburg, Evelien; Kliffen, Suzanne; van Pelt, Wilfrid (2017)
      Urban canal swimming events are popular in the Netherlands. In 2015, two city canal swimming events took place, in Utrecht (Utrecht Singel Swim, USS) and in Amsterdam (Amsterdam City Swim, ACS). This prospective study characterizes the health risks associated with swimming in urban waters. Online questionnaires were sent to 160 (USS) and 2,692 (ACS) participants, with relatives of participants who did not swim completing the questionnaire as a control. Swimming water specimens and stool specimens of diarrheic participants in the ACS group were analysed. A total of 49% of USS and 51% of ACS swimmers returned their questionnaires. Nine percent of USS swimmers and 4% of non-swimmers reported gastrointestinal complaints (aRR 2.1; 95% CI: 0.3-16), while a total of 31% of ACS swimmers and 5% of non-swimmers reported gastrointestinal complaints (aRR 6.3; 95% CI: 4.1-9.5). AGI risk among ACS participants was directly related to increasing number of mouthfuls of water swallowed. Various norovirus genotypes were detected in five out of seven stool specimens taken from ACS participants and in all three tested ACS water samples. We conclude that the AGI risk among open-water swimmers in urban areas depends on the circumstances around the event. The epidemiological curve, the statistical association between swimming and AGI, and the microbiological evidence for norovirus in stool and water specimens suggest that AGI outbreak after the ACS event was due to water contamination by multiple norovirus strains, which is possibly linked to sewage overflow due to prior heavy rainfall. There is need for more targeted preventive measurements and recommendations for organizers, municipal authorities and participants to prevent this reoccurring in the future.