• Login
    View Item 
    •   Home
    • Articles and other publications by RIVM employees
    • Miscellaneous
    • View Item
    •   Home
    • Articles and other publications by RIVM employees
    • Miscellaneous
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    RIVM Publications RepositoryCommunitiesTitleAuthorsIssue DateSubmit Date

    My Account

    LoginRegister

    Statistics

    Display statistics

    Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Authors
    Zhang, Zhenyan
    Ke, Mingjing
    Qu, Qian
    Peijnenburg, W J G M
    Lu, Tao
    Zhang, Qi
    Ye, Yizhi
    Xu, Pengfei
    Du, Benben
    Sun, Liwei
    Qian, Haifeng
    Show allShow less
    Type
    Article
    Language
    en
    
    Metadata
    Show full item record
    Title
    Impact of copper nanoparticles and ionic copper exposure on wheat (Triticum aestivum L.) root morphology and antioxidant response.
    Published in
    Environ Pollut 2018; 239:689-97
    Publiekssamenvatting
    Copper nanoparticles (nCu) are widely used in industry and in daily life, due to their unique physical, chemical, and biological properties. Few studies have focused on nCu phytotoxicity, especially with regard to toxicity mechanisms in crop plants. The present study examined the effect of 15.6 μM nCu exposure on the root morphology, physiology, and gene transcription levels of wheat (Triticum aestivum L.), a major crop cultivated worldwide. The results obtained were compared with the effects of exposing wheat to an equivalent molar concentration of ionic Cu (Cu2+ released from CuSO4) and to control plants. The relative growth rate of roots decreased to approximately 60% and the formation of lateral roots was stimulated under nCu exposure, possibly due to the enhancement of nitrogen uptake and accumulation of auxin in lateral roots. The expression of four of the genes involved in the positive regulation of cell proliferation and negative regulation of programmed cell death decreased to 50% in the Cu2+ treatment compared to that of the control, while only one gene was down-regulated to about half of the control in nCu treatment. This explained the decreased root cell proliferation and higher extent of induced cell death in Cu2+- than in nCu-exposed plants. The increased methane dicarboxylic aldehyde accumulation (2.17-fold increase compared with the control) and decreased antioxidant enzyme activities (more than 50% decrease compared with the control) observed in the Cu2+ treatment in relation to the nCu treatment indicated higher oxidative stress in Cu2+- than in nCu-exposed plants. Antioxidant (e.g., proline) synthesis was pronouncedly induced by nCu to scavenge excess reactive oxygen species, alleviating phytotoxicity to wheat exposed to this form of Cu. Overall, oxidative stress and root growth inhibition were the main causes of nCu toxicity.
    DOI
    10.1016/j.envpol.2018.04.066
    PMID
    29715688
    URI
    http://hdl.handle.net/10029/621926
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.envpol.2018.04.066
    Scopus Count
    Collections
    Miscellaneous

    entitlement

    Related articles

    • Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings.
    • Authors: Xu Y, Yu W, Ma Q, Zhou H, Jiang C
    • Issue date: 2017 Aug
    • Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings.
    • Authors: Prakash MG, Chung IM
    • Issue date: 2016 Sep
    • Phytotoxicity of Cu(2+) and Cd(2+) to the roots of four different wheat cultivars as related to charge properties and chemical forms of the metals on whole plant roots.
    • Authors: Dong G, Nkoh JN, Hong ZN, Dong Y, Lu HL, Yang J, Pan XY, Xu RK
    • Issue date: 2020 Jun 15
    • Simultaneous exposure of wheat (Triticum aestivum L.) to CuO and S nanoparticles alleviates toxicity by reducing Cu accumulation and modulating antioxidant response.
    • Authors: Huang G, Zuverza-Mena N, White JC, Hu H, Xing B, Dhankher OP
    • Issue date: 2022 Sep 15
    • Priming with ACC-utilizing bacterium attenuated copper toxicity, improved oxidative stress tolerance, and increased phytoextraction capacity in wheat.
    • Authors: Singh RP, Jha PN
    • Issue date: 2018 Nov

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.