Is current risk assessment of non-genotoxic carcinogens protective?
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Authors
Braakhuis, Hedwig MSlob, Wout
Olthof, Evelyn D
Wolterink, Gerrit
Zwart, Edwin P
Gremmer, Eric R
Rorije, Emiel
van Benthem, Jan
Woutersen, Ruud
van der Laan, Jan Willem
Luijten, Mirjam
Type
ArticleLanguage
en
Metadata
Show full item recordTitle
Is current risk assessment of non-genotoxic carcinogens protective?Published in
Crit Rev Toxicol 2018; 10:1-12Publiekssamenvatting
Non-genotoxic carcinogens (NGTXCs) do not cause direct DNA damage but induce cancer via other mechanisms. In risk assessment of chemicals and pharmaceuticals, carcinogenic risks are determined using carcinogenicity studies in rodents. With the aim to reduce animal testing, REACH legislation states that carcinogenicity studies are only allowed when specific concerns are present; risk assessment of compounds that are potentially carcinogenic by a non-genotoxic mode of action is usually based on subchronic toxicity studies. Health-based guidance values (HBGVs) of NGTXCs may therefore be based on data from carcinogenicity or subchronic toxicity studies depending on the legal framework that applies. HBGVs are usually derived from No-Observed-Adverse-Effect-Levels (NOAELs). Here, we investigate whether current risk assessment of NGTXCs based on NOAELs is protective against cancer. To answer this question, we estimated Benchmark doses (BMDs) for carcinogenicity data of 44 known NGTXCs. These BMDs were compared to the NOAELs derived from the same carcinogenicity studies, as well as to the NOAELs derived from the associated subchronic studies. The results lead to two main conclusions. First, a NOAEL derived from a subchronic study is similar to a NOAEL based on cancer effects from a carcinogenicity study, supporting the current practice in REACH. Second, both the subchronic and cancer NOAELs are, on average, associated with a cancer risk of around 1% in rodents. This implies that for those chemicals that are potentially carcinogenic in humans, current risk assessment of NGTXCs may not be completely protective against cancer. Our results call for a broader discussion within the scientific community, followed by discussions among risk assessors, policy makers, and other stakeholders as to whether or not the potential cancer risk levels that appear to be associated with currently derived HBGVs of NGXTCs are acceptable.PMID
29745287ae974a485f413a2113503eed53cd6c53
10.1080/10408444.2018.1458818
Scopus Count
Collections