Show simple item record

dc.contributor.authorGong, Bing
dc.contributor.authorHe, Erkai
dc.contributor.authorQiu, Hao
dc.contributor.authorLi, Jianqiu
dc.contributor.authorJi, Jie
dc.contributor.authorPeijnenburg, Willie J G M
dc.contributor.authorLiu, Yang
dc.contributor.authorZhao, Ling
dc.contributor.authorCao, Xinde
dc.date.accessioned2019-06-25T11:11:42Z
dc.date.available2019-06-25T11:11:42Z
dc.date.issued2019-07-01
dc.identifier.issn1873-6424
dc.identifier.pmid31026692
dc.identifier.doi10.1016/j.envpol.2019.04.075
dc.identifier.urihttp://hdl.handle.net/10029/623118
dc.description.abstractThere is a lack of appropriate models to delineate the toxicity of rare earth elements (REEs) while taking into account the factors that affect bioavailability. Here, standardized wheat (Triticum aestivum L.) root elongation tests were conducted to examine the impact of exposure conditions (i.e., varying Ca, Mg, Na, K and pH levels) on Y and Ce toxicity. Cation competition and electrostatic theory were examined for their applicability in explaining the observed variations in toxicity. Only Ca2+ and Mg2+ significantly alleviated the toxicity of Y3+ and Ce3+, while Na+, K+ and H+ showed no significant effects. Based on the cation competition, the derived binding constants for the hypothetical biotic ligands of wheat logKCaBL, logKMgBL, logKYBL, and logKCeBL were 3.87, 3.59, 6.70, and 6.48, respectively. The biotic ligand model (BLM) succeeded in predicting toxicities of Y and Ce, with more than 93% of the variance in toxicity explained. Given the BLM requires large data sets for deriving model parameters, attempts were further made to explore a simpler electrostatic based model to quantify REEs toxicity. The results demonstrated that the predictive capacity of the electrostatic approach, which considers ion activities at the plasma membrane surface, was comparable to that of BLM with at least 87% of the variations in toxicity explained. This suggested that the electrostatic theory can serve as a surrogate to BLM in modeling Y and Ce toxicities. Therefore, we recommend the BLM and electrostatic-based model as effective approaches to incorporate bioavailability in quantifying REEs toxicity in the presence of various levels of other major cations.en_US
dc.language.isoenen_US
dc.subjectBioavailabilityen_US
dc.subjectBiotic ligand modelen_US
dc.subjectElectrostatic toxicity modelen_US
dc.subjectRare earth elementsen_US
dc.subjectToxicityen_US
dc.titleThe cation competition and electrostatic theory are equally valid in quantifying the toxicity of trivalent rare earth ions (Y and Ce) to Triticum aestivum.en_US
dc.typeArticleen_US
dc.identifier.journalEnviron Pollut 2019; 250:456-63en_US
dc.source.journaltitleEnvironmental pollution (Barking, Essex : 1987)


Files in this item

Thumbnail
Name:
Publisher version

This item appears in the following Collection(s)

Show simple item record