• Login
    View Item 
    •   Home
    • Articles and other publications by RIVM employees
    • Miscellaneous
    • View Item
    •   Home
    • Articles and other publications by RIVM employees
    • Miscellaneous
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    RIVM Publications RepositoryCommunitiesTitleAuthorsIssue DateSubmit Date

    My Account

    LoginRegister

    Statistics

    Display statistics

    A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Authors
    Chen, Jie
    de Hoogh, Kees
    Gulliver, John
    Hoffmann, Barbara
    Hertel, Ole
    Ketzel, Matthias
    Bauwelinck, Mariska
    van Donkelaar, Aaron
    Hvidtfeldt, Ulla A
    Katsouyanni, Klea
    Janssen, Nicole A H
    Martin, Randall V
    Samoli, Evangelia
    Schwartz, Per E
    Stafoggia, Massimo
    Bellander, Tom
    Strak, Maciek
    Wolf, Kathrin
    Vienneau, Danielle
    Vermeulen, Roel
    Brunekreef, Bert
    Hoek, Gerard
    Show allShow less
    Type
    Article
    Language
    en
    
    Metadata
    Show full item record
    Title
    A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide.
    Published in
    Environ Int 2019; 130:104934
    DOI
    10.1016/j.envint.2019.104934
    PMID
    31229871
    URI
    http://hdl.handle.net/10029/623302
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.envint.2019.104934
    Scopus Count
    Collections
    Miscellaneous

    entitlement

    Related articles

    • Spatial PM(2.5), NO(2), O(3) and BC models for Western Europe - Evaluation of spatiotemporal stability.
    • Authors: de Hoogh K, Chen J, Gulliver J, Hoffmann B, Hertel O, Ketzel M, Bauwelinck M, van Donkelaar A, Hvidtfeldt UA, Katsouyanni K, Klompmaker J, Martin RV, Samoli E, Schwartz PE, Stafoggia M, Bellander T, Strak M, Wolf K, Vienneau D, Brunekreef B, Hoek G
    • Issue date: 2018 Nov
    • Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions.
    • Authors: Eeftens M, Meier R, Schindler C, Aguilera I, Phuleria H, Ineichen A, Davey M, Ducret-Stich R, Keidel D, Probst-Hensch N, Künzli N, Tsai MY
    • Issue date: 2016 Apr 18
    • Development and Evaluation of Spatio-Temporal Air Pollution Exposure Models and Their Combinations in the Greater London Area, UK.
    • Authors: Dimakopoulou K, Samoli E, Analitis A, Schwartz J, Beevers S, Kitwiroon N, Beddows A, Barratt B, Rodopoulou S, Zafeiratou S, Gulliver J, Katsouyanni K
    • Issue date: 2022 Apr 28
    • Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    • Authors: Paciorek CJ, Liu Y, HEI Health Review Committee
    • Issue date: 2012 May
    • Development of West-European PM(2.5) and NO(2) land use regression models incorporating satellite-derived and chemical transport modelling data.
    • Authors: de Hoogh K, Gulliver J, Donkelaar AV, Martin RV, Marshall JD, Bechle MJ, Cesaroni G, Pradas MC, Dedele A, Eeftens M, Forsberg B, Galassi C, Heinrich J, Hoffmann B, Jacquemin B, Katsouyanni K, Korek M, Künzli N, Lindley SJ, Lepeule J, Meleux F, de Nazelle A, Nieuwenhuijsen M, Nystad W, Raaschou-Nielsen O, Peters A, Peuch VH, Rouil L, Udvardy O, Slama R, Stempfelet M, Stephanou EG, Tsai MY, Yli-Tuomi T, Weinmayr G, Brunekreef B, Vienneau D, Hoek G
    • Issue date: 2016 Nov

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.