Show simple item record

dc.contributor.authorKeller, Johannes G
dc.contributor.authorPeijnenburg, Willie
dc.contributor.authorWerle, Kai
dc.contributor.authorLandsiedel, Robert
dc.contributor.authorWohlleben, Wendel
dc.date.accessioned2020-08-29T16:14:36Z
dc.date.available2020-08-29T16:14:36Z
dc.date.issued2020-02-12
dc.identifier.issn2079-4991
dc.identifier.pmid32059359
dc.identifier.doi10.3390/nano10020311
dc.identifier.urihttp://hdl.handle.net/10029/624285
dc.description.abstractDissolution rates of nanomaterials can be decisive for acute in vivo toxicity (via the released ions) and for biopersistence (of the remaining particles). Continuous flow systems (CFSs) can screen for both aspects, but operational parameters need to be adjusted to the specific physiological compartment, including local metal ion saturation. CFSs have two adjustable parameters: the volume flow-rate and the initial particle loading. Here we explore the pulmonary lysosomal dissolution of nanomaterials containing the metals Al, Ba, Zn, Cu over a wide range of volume flow-rates in a single experiment. We identify the ratio of particle surface area (SA) per volume flow-rate (SA/V) as critical parameter that superimposes all dissolution rates of the same material. Three complementary benchmark materials-ZnO (quick dissolution), TiO2 (very slow dissolution), and BaSO4 (partial dissolution)-consistently identify the SA/V range of 0.01 to 0.03 h/cm as predictive for lysosomal pulmonary biodissolution. We then apply the identified method to compare against non-nanoforms of the same substances and test aluminosilicates. For BaSO4 and TiO2, we find high similarity of the dissolution rates of their respective nanoform and non-nanoform, governed by the local ion solubility limit at relevant SA/V ranges. For aluminosilicates, we find high similarity of the dissolution rates of two Kaolin nanoforms but significant dissimilarity against Bentonite despite the similar composition.en_US
dc.language.isoenen_US
dc.subject3R methoden_US
dc.subjectdissolutionen_US
dc.subjectdissolution rateen_US
dc.subjectnanomaterial groupingen_US
dc.subjectregulatory hazard assessmenten_US
dc.subjectrisk assessmenten_US
dc.titleUnderstanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome.en_US
dc.typeArticleen_US
dc.identifier.journalNanomaterials 2020; 10(2):311en_US
dc.source.journaltitleNanomaterials (Basel, Switzerland)


This item appears in the following Collection(s)

Show simple item record