Show simple item record

dc.contributor.authorLoef, B
dc.contributor.authorWong, A
dc.contributor.authorJansen, NAH
dc.contributor.authorStrak, M
dc.contributor.authorHoekstra, J
dc.contributor.authorPicavet, HSJ
dc.contributor.authorBoshuizen, HC
dc.contributor.authorVerschuren, WMM
dc.contributor.authorHerber, GCM
dc.date.accessioned2021-05-05T17:06:13Z
dc.date.available2021-05-05T17:06:13Z
dc.date.issued2022-06-20
dc.identifier.doi10.1038/s41598-022-14632-w
dc.identifier.urihttp://hdl.handle.net/10029/624924
dc.description.abstractDue to the wealth of exposome data from longitudinal cohort studies that is currently available, the need for methods to adequately analyze these data is growing. We propose an approach in which machine learning is used to identify longitudinal exposome-related predictors of health, and illustrate its potential through an application. Our application involves studying the relation between exposome and self-perceived health based on the 30-year running Doetinchem Cohort Study. Random Forest (RF) was used to identify the strongest predictors due to its favorable prediction performance in prior research. The relation between predictors and outcome was visualized with partial dependence and accumulated local effects plots. To facilitate interpretation, exposures were summarized by expressing them as the average exposure and average trend over time. The RF model’s ability to discriminate poor from good self-perceived health was acceptable (Area-Under-the-Curve = 0.707). Nine exposures from different exposome-related domains were largely responsible for the model’s performance, while 87 exposures seemed to contribute little to the performance. Our approach demonstrates that ML can be interpreted more than widely believed, and can be applied to identify important longitudinal predictors of health over the life course in studies with repeated measures of exposure. The approach is context-independent and broadly applicable.en_US
dc.language.isoenen_US
dc.titleUsing random forest to identify longitudinal predictors of health in a 30 year cohort studyen_US
dc.typePreprinten_US
dc.identifier.journalScientific Reports volume 12, Article number: 10372 (2022)
refterms.dateFOA2021-05-05T17:06:13Z


This item appears in the following Collection(s)

Show simple item record