• Login
    View Item 
    •   Home
    • Articles and other publications by RIVM employees
    • Miscellaneous
    • View Item
    •   Home
    • Articles and other publications by RIVM employees
    • Miscellaneous
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    RIVM Publications RepositoryCommunitiesTitleAuthorsIssue DateSubmit Date

    My Account

    LoginRegister

    Statistics

    Display statistics

    Using random forest to identify longitudinal predictors of health in a 30-year cohort study.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Authors
    Loef, Bette
    Wong, Albert
    Janssen, Nicole A H
    Strak, Maciek
    Hoekstra, Jurriaan
    Picavet, H Susan J
    Boshuizen, H C Hendriek
    Verschuren, W M Monique
    Herber, Gerrie-Cor M
    Type
    Article
    Language
    en
    
    Metadata
    Show full item record
    Title
    Using random forest to identify longitudinal predictors of health in a 30-year cohort study.
    Published in
    Scientific reports 2022 Jun 20;12(1):10372
    DOI
    10.1038/s41598-022-14632-w
    PMID
    35725920
    URI
    http://hdl.handle.net/10029/625875
    ae974a485f413a2113503eed53cd6c53
    10.1038/s41598-022-14632-w
    Scopus Count
    Collections
    Miscellaneous

    entitlement

    Related articles

    • Machine learning approaches to characterize the obesogenic urban exposome.
    • Authors: Ohanyan H, Portengen L, Huss A, Traini E, Beulens JWJ, Hoek G, Lakerveld J, Vermeulen R
    • Issue date: 2022 Jan
    • Associations between the urban exposome and type 2 diabetes: Results from penalised regression by least absolute shrinkage and selection operator and random forest models.
    • Authors: Ohanyan H, Portengen L, Kaplani O, Huss A, Hoek G, Beulens JWJ, Lakerveld J, Vermeulen R
    • Issue date: 2022 Dec
    • Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort.
    • Authors: Agier L, Basagaña X, Maitre L, Granum B, Bird PK, Casas M, Oftedal B, Wright J, Andrusaityte S, de Castro M, Cequier E, Chatzi L, Donaire-Gonzalez D, Grazuleviciene R, Haug LS, Sakhi AK, Leventakou V, McEachan R, Nieuwenhuijsen M, Petraviciene I, Robinson O, Roumeliotaki T, Sunyer J, Tamayo-Uria I, Thomsen C, Urquiza J, Valentin A, Slama R, Vrijheid M, Siroux V
    • Issue date: 2019 Feb
    • Deep phenotyping meets big data: the Geoscience and hEalth Cohort COnsortium (GECCO) data to enable exposome studies in The Netherlands.
    • Authors: Lakerveld J, Wagtendonk A, Vaartjes I, Karssenberg D, GECCO Consortium
    • Issue date: 2020 Nov 13
    • Human Early Life Exposome (HELIX) study: a European population-based exposome cohort.
    • Authors: Maitre L, de Bont J, Casas M, Robinson O, Aasvang GM, Agier L, Andrušaitytė S, Ballester F, Basagaña X, Borràs E, Brochot C, Bustamante M, Carracedo A, de Castro M, Dedele A, Donaire-Gonzalez D, Estivill X, Evandt J, Fossati S, Giorgis-Allemand L, R Gonzalez J, Granum B, Grazuleviciene R, Bjerve Gützkow K, Småstuen Haug L, Hernandez-Ferrer C, Heude B, Ibarluzea J, Julvez J, Karachaliou M, Keun HC, Hjertager Krog N, Lau CE, Leventakou V, Lyon-Caen S, Manzano C, Mason D, McEachan R, Meltzer HM, Petraviciene I, Quentin J, Roumeliotaki T, Sabido E, Saulnier PJ, Siskos AP, Siroux V, Sunyer J, Tamayo I, Urquiza J, Vafeiadi M, van Gent D, Vives-Usano M, Waiblinger D, Warembourg C, Chatzi L, Coen M, van den Hazel P, Nieuwenhuijsen MJ, Slama R, Thomsen C, Wright J, Vrijheid M
    • Issue date: 2018 Sep 10

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.