Show simple item record

dc.contributor.authorJaarsveld JA van
dc.date.accessioned2007-02-23T15:33:32Z
dc.date.available2007-02-23T15:33:32Z
dc.date.issued2004-12-17en_US
dc.identifier500045001en_US
dc.identifier.urihttp://hdl.handle.net/10029/8968
dc.description.abstractThis report describes in detail, OPS-Pro 4.1, the latest version of the Operational Priority Substances (OPS) model. OPS is a model that simulates the atmospheric process sequence of emission, dispersion, transport, chemical conversion and finally deposition. The model is set up as a universal framework supporting the modelling of a wide variety of pollutants including fine particles but the main purpose is to calculate the deposition of acidifying compounds over the Netherlands at a high spatial resolution. Previous versions of the model have been used since 1989 for all the atmospheric transport and deposition calculations in the State of the Environment reports and Environmental Outlook studies in the Netherlands. An extensive model validation exercise was carried out using observations from the National Air Quality Monitoring Network over the past twenty years. Good agreement was found for both SOx and NOy species in the spatial patterns, just as in trends over the past ten years. An exception is formed by the NHx species, which are, in general, underestimated by approximately 25%. This discrepancy has for some time been known as the 'ammonia gap'. The total uncertainty for deposition to a nationally distributed ecosystem is estimated at 20%, 25 and 30% for SOx, NOy and NHx, respectively. For a specific ecosystem (size: 500 x 500m to 5000 x 5000m), the uncertainties will be much higher: 50, 60, 100% for SOx, NOy and NHx deposition, respectively. Included in these figures are the uncertainties in current emission estimates. Uncertainties in dry deposition velocities dominate the total uncertainty.
dc.description.abstractDit rapport beschrijft OPS-Pro 4.1, de laatste versie van het Operationele Prioritaire Stoffen (OPS) model. Het OPS model is een mechanistisch model dat op lokale en nationale schaal de atmosferische verspreiding van stoffen simuleert aan de hand van actuele meteorologische gegevens. Het model is opgezet als een universeel raamwerk waarmee de verspreiding en depositie van een breed scala aan stoffen kan worden berekend maar het zwaartepunt ligt bij de modellering van de depositie van verzurende stoffen met een hoog ruimtelijke detail. Eerdere versies van het model worden al sinds 1989 gebruikt voor berekeningen in het kader van periodieke Milieubalansen en -verkenningen. Een uitgebreide vergelijking van modelresultaten met metingen van het Landelijk Meetnet Luchtverontreiniging is uitgevoerd. Een goede overeenstemming in ruimtelijke verdeling wordt gevonden voor verzurende stoffen. In absolute zin komen SOx en NOy concentraties goed overeen met de metingen voor de gehele beschouwde periode. Een uitzondering wordt gevormd door NHx stoffen, welke in hun algemeenheid met ca. 25% worden onderschat. Dit verschil is al enige tijd bekend als het 'ammoniakgat'. De totale onzekerheid voor depositie op een ecosysteem dat verspreid ligt over Nederland word geschat op 20, 25 en 30% voor respectievelijk SOx, NOy en NHx. Voor een specifiek ecosysteem (afmeting: 500 x 500m tot 5000 x 5000m) zijn de onzekerheden veel groter: 50, 60, 100% voor respectievelijk SOx, NOy en NHx. Deze onzekerheden zijn inclusief onzekerheden in de hedendaagse emissieschattingen. Onzekerheden in droge depositiesnelheden dragen verreweg het meest bij aan de grote onzekerheidsmarge bij de depositie op lokale schaal.
dc.format.extent2030000 bytesen_US
dc.format.extent2078330 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen_US
dc.publisherRijksinstituut voor Volksgezondheid en Milieu RIVMen_US
dc.relation.ispartofseriesRIVM Rapport 500045001en_US
dc.relation.urlhttp://www.rivm.nl/bibliotheek/rapporten/500045001.htmlen_US
dc.subject.otherdispersionen
dc.subject.otherdepositionen
dc.subject.otheracid depositionen
dc.subject.othermodellingen
dc.subject.otherhazardous substancesen
dc.subject.otherdispersienl
dc.subject.otherdepositienl
dc.subject.otherzure depositienl
dc.subject.othermodellenonderzoeknl
dc.subject.othergevaarlijke stoffennl
dc.subject.otherverspreidingsmodelnl
dc.subject.otherluchtconcentratiesnl
dc.subject.otheratmosferische depositienl
dc.subject.otherprioritaire stoffennl
dc.titleThe Operational Priority Substances modelen_US
dc.title.alternativeHet Operationele Prioritaire Stoffen modelen_US
dc.contributor.departmentLEDen_US
refterms.dateFOA2018-12-18T16:04:02Z
html.description.abstractThis report describes in detail, OPS-Pro 4.1, the latest version of the Operational Priority Substances (OPS) model. OPS is a model that simulates the atmospheric process sequence of emission, dispersion, transport, chemical conversion and finally deposition. The model is set up as a universal framework supporting the modelling of a wide variety of pollutants including fine particles but the main purpose is to calculate the deposition of acidifying compounds over the Netherlands at a high spatial resolution. Previous versions of the model have been used since 1989 for all the atmospheric transport and deposition calculations in the State of the Environment reports and Environmental Outlook studies in the Netherlands. An extensive model validation exercise was carried out using observations from the National Air Quality Monitoring Network over the past twenty years. Good agreement was found for both SOx and NOy species in the spatial patterns, just as in trends over the past ten years. An exception is formed by the NHx species, which are, in general, underestimated by approximately 25%. This discrepancy has for some time been known as the 'ammonia gap'. The total uncertainty for deposition to a nationally distributed ecosystem is estimated at 20%, 25 and 30% for SOx, NOy and NHx, respectively. For a specific ecosystem (size: 500 x 500m to 5000 x 5000m), the uncertainties will be much higher: 50, 60, 100% for SOx, NOy and NHx deposition, respectively. Included in these figures are the uncertainties in current emission estimates. Uncertainties in dry deposition velocities dominate the total uncertainty.
html.description.abstractDit rapport beschrijft OPS-Pro 4.1, de laatste versie van het Operationele Prioritaire Stoffen (OPS) model. Het OPS model is een mechanistisch model dat op lokale en nationale schaal de atmosferische verspreiding van stoffen simuleert aan de hand van actuele meteorologische gegevens. Het model is opgezet als een universeel raamwerk waarmee de verspreiding en depositie van een breed scala aan stoffen kan worden berekend maar het zwaartepunt ligt bij de modellering van de depositie van verzurende stoffen met een hoog ruimtelijke detail. Eerdere versies van het model worden al sinds 1989 gebruikt voor berekeningen in het kader van periodieke Milieubalansen en -verkenningen. Een uitgebreide vergelijking van modelresultaten met metingen van het Landelijk Meetnet Luchtverontreiniging is uitgevoerd. Een goede overeenstemming in ruimtelijke verdeling wordt gevonden voor verzurende stoffen. In absolute zin komen SOx en NOy concentraties goed overeen met de metingen voor de gehele beschouwde periode. Een uitzondering wordt gevormd door NHx stoffen, welke in hun algemeenheid met ca. 25% worden onderschat. Dit verschil is al enige tijd bekend als het 'ammoniakgat'. De totale onzekerheid voor depositie op een ecosysteem dat verspreid ligt over Nederland word geschat op 20, 25 en 30% voor respectievelijk SOx, NOy en NHx. Voor een specifiek ecosysteem (afmeting: 500 x 500m tot 5000 x 5000m) zijn de onzekerheden veel groter: 50, 60, 100% voor respectievelijk SOx, NOy en NHx. Deze onzekerheden zijn inclusief onzekerheden in de hedendaagse emissieschattingen. Onzekerheden in droge depositiesnelheden dragen verreweg het meest bij aan de grote onzekerheidsmarge bij de depositie op lokale schaal.


Files in this item

Thumbnail
Name:
500045001.pdf
Size:
1.982Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record