Terrestrial carbon sinks and the Kyoto protocol: the scientific issues
Citations
Altmetric:
Series / Report no.
Open Access
Type
Report
Language
en
Date
2001-06-29
Research Projects
Organizational Units
Journal Issue
Title
Terrestrial carbon sinks and the Kyoto protocol: the
scientific issues
Translated Title
De opname mogelijkheden van koolstof door
vegetatie en aardoppervlak en het Kyoto protocol: wetenschappelijke
review
Published in
Abstract
Abstract niet beschikbaar
Since the publication of the IPCC special report on Land Use, Land Use Change and Forestry, considerable advances in our understanding of the global carbon cycle have occurred. This report attempts to review the terrestrial part of that cycle and assesses the implications for the implementation of then Kyoto protocol. The review assesses the impacts of the effects of continuing carbon uptake of old growth forest, interannual variability of terrestrial uptake. It is speculated that impact on N-deposition on carbon sequestration is small (of order 10%). It is unknown whether agriculture at large is a source or sink. Lack of knowledge of soil organic carbon contributes strongly to this uncertainty. The sustainability of the terrestrial sink also reviewed. It is concluded that eventually all sinks saturate, but that land use management can play a critical role in sustaining the sink strength. The role of feedback of the terrestrial carbon pools on climate change is discussed.
Since the publication of the IPCC special report on Land Use, Land Use Change and Forestry, considerable advances in our understanding of the global carbon cycle have occurred. This report attempts to review the terrestrial part of that cycle and assesses the implications for the implementation of then Kyoto protocol. The review assesses the impacts of the effects of continuing carbon uptake of old growth forest, interannual variability of terrestrial uptake. It is speculated that impact on N-deposition on carbon sequestration is small (of order 10%). It is unknown whether agriculture at large is a source or sink. Lack of knowledge of soil organic carbon contributes strongly to this uncertainty. The sustainability of the terrestrial sink also reviewed. It is concluded that eventually all sinks saturate, but that land use management can play a critical role in sustaining the sink strength. The role of feedback of the terrestrial carbon pools on climate change is discussed.
Description
Publisher
Alterra
Wageningen
Wageningen
Sponsors
SG-NOP