• Login
    View Item 
    •   Home
    • RIVM official reports
    • RIVM official reports
    • View Item
    •   Home
    • RIVM official reports
    • RIVM official reports
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    RIVM Publications RepositoryCommunitiesTitleAuthorsIssue DateSubmit Date

    My Account

    LoginRegister

    Statistics

    Display statistics

    Nonlinear Dynamics of the Equatorial Ocean-Atmosphere System

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Average rating
     
       votes
    Cast your vote
    You can rate an item by clicking the amount of stars they wish to award to this item. When enough users have cast their vote on this item, the average rating will also be shown.
    Star rating
     
    Your vote was cast
    Thank you for your feedback
    Authors
    Dijkstra HA
    Type
    Report
    Language
    en
    
    Metadata
    Show full item record
    Title
    Nonlinear Dynamics of the Equatorial Ocean-Atmosphere System
    Translated Title
    Niet-lineaire dynamiek van het Equatoriale Oceaan-Aard systeem
    Publiekssamenvatting
    Abstract niet beschikbaar
    A fundamental study of the nonlinear dynamics of the Tropical Pacific climate system was performed within this project. Using tools of dynamic systems theory and an intermediate coupled ocean-atmosphere model, the physical mechanisms determining the time-mean state of the Tropical Pacific and its variability on interannual time scales (El-Nino/Southern Oscillation, ENSO) are described. Coupled processes between ocean and atmosphere are not only responsible for the ENSO variability, but also determine the zonal spatial structure of the mean state (warm pool/cold tongue structure) and its equatorial asymmetry. Within an equatorial symmetric coupled model, which allows the interaction between the mean state and its variability, the ENSO mode is shown to be a robust eigenmode of the coupled system, which is destabilised as coupling strength is increased. The spatial structure of the mean state is central to the propagation mechanism and spatial pattern of the ENSO mode, which was shown to correspond well to the recently proposed recharge oscillator image, In reality, the mean state also displays substantial equatorial asymmetry. This asymmetry is important for the structure of the seasonal cycle in the Tropical Pacific; its physical state has been investigated in a conceptual model. A further and final study explored the impact of intra-seasonal oscillations, atmospheric noise and the seasonal cycle on the interannual variability of the coupled system.
    Sponsors
    SG-NOP
    URI
    http://hdl.handle.net/10029/256719
    Collections
    RIVM official reports

    entitlement

     

    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.